5
Urban Boundaries and Edges

The fascination of boundaries lies in their ambivalent role of dividing and con-
necting at the same time. They mark the transition between different modes of exist-
ence. They transmit and control exchange between territories. They are the play-

ground for discovery and conquest ... They are the result of never ending
competition and exhibit structure on many scales. (Richter and Peitgen, 1985,
p.571-572.)

5.1 At the Edge of the City

Boundaries, as Richter and Peitgen (1985) so graphically portray, are places
which mark the transition between different regimes, different systems, and
this is nowhere more so than between the rural and urban worlds at the
edge of the city. In one sense, the boundary of the city marks the transition
between different epochs, between an older agricultural society and the
newer industrial, although the distinction is becoming weaker as contem-
porary society is beginning to make its transition to a post-industrial era
with all its consequences for how cities will be organized. Nevertheless,
such zones of transition do reflect the tension between the old and the
new, places where more stable, established structures are being continually
tested by a newer, ever-changing dynamic. Even in these terms, such
boundaries are not likely to be ‘smooth’ in any sense and as we shall see,
their physical form is both irregular but self-similar in that a precise tran-
sition between the old and the new can never be definitively marked out.

In defining the physical form of the city, its edge or boundary is the most
obvious visual delimiter of its size and shape. Statistical definitions of cities
rely upon the definition of boundaries, although such definitions are never
comprehensive; there are so many possible ways of cutting the continuum
of development from urban to rural that the general idea of a boundary
remains a conceptual notion which is only given physical form through
narrow definitions. Urban boundaries, however, are not simply linear con-
structs which mark off one side of the continuum from the other but they
imply area, and thus shape (Batty, 1991). As we have argued in earlier
chapters, although cities can be visualized across many dimensions, they
are usually best pictured in the plane as two-dimensional phenomena and
thus their boundaries immediately imply some measure of area. In this
sense, the boundary is clearly something more than a one-dimensional line
for whenever we examine such an edge, we conceptualize an area.
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There are many notions as to what constitutes the boundary of the city,
several of which we will be using in this book. In Chapters 3 and 4, we
defined cities in terms of concentric rings of different land uses about their
CBD:s based on von Thunen's original division of land use along a spectrum
from highly urban to rural; in contemporary terms, this continuum begins
with high density commercial at the core of the city and evolves to low
density agricultural uses such as market gardening at the periphery. We
also referred extensively in Chapter 4 to the notion of inner and outer sub-
urban areas, while the idea of the suburban fringe as the zone of transition
between urban and rural can be extended to the quasi-urban area at the
rural edge of the city sometimes called exurbia. In later chapters, we will
have recourse to extend our definition of the city to its wider hinterland
or field, that area which contains all the development which in one way or
another is associated with the city. Definitional problems abound, too, for
in the age of the world city, activities may exist everywhere on the globe
which are in some sense dependent upon the city in question. Finally, we
will make our definitions of the extent of the city much more precise from
Chapter 7 on when we begin to introduce the idea that population density
must be the delimiter of form and that density itself rather than the shape
of land use or physical development, is the true measure of whether or not
cities are fractal.

In this chapter and the next, we will begin to define and measure the
form of the city in analogy to the way we discussed the definition of a
fractal line in Chapters 2 and 3. There we argued that fractal lines are some-
thing more than the one-dimensional Euclidean line but something less
than the two-dimensional plane; the coastline is the example par excellence.
In fact, it is likely that the fractal dimension of our urban boundaries will
be closer to 1 than to 2 for we will not consider cities which are entirely
composed of boundaries, in which the boundary itself twists and turns to
fill the two-dimensional space. This point in itself is somewhat contro-
versial, for it is possible to define cities which are entirely composed of
boundaries if the level of spatial resolution is chosen accordingly. More-
over, there are recent theories of the post-industrial city which are predi-
cated on the idea that everything significant in the modern city is at the
edge: ‘Edge Cities” as they have been called (Garreau, 1991), thus giving
some meaning to our own notion that the most interesting aspects of urban
phenomena depend upon what is happening on their boundaries.

However, urban boundaries or edges can be very different from coast-
lines in the following sense. Whereas our interest in coastlines is often only
over a fixed stretch of the line, our interest in urban boundaries is likely
to be over their entirety in that to define a city by its boundary, there is
usually some measure of closure to the line. The boundary thus marks out
an envelope. In fact, if we examine coastlines in their entirety too, we must
consider the same sorts of closed line. It is nonetheless a comment on the
rudimentary development of fractal geometry that there are virtually no
discussions so far of the implications for measurement posed by objects
with closed, in contrast to open, boundaries. We will in fact extend our
discussion into these realms, but to anticipate the outcome, much remains
to be done. In this chapter we will define the problem of the closed
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boundary away by adopting artificial closure, and only in the next will we
broach the matter directly.

In Chapter 2, we identified four ways in which we might define objects
of interest and measure their scale-dependence, hence their fractal dimen-
sion. We noted that we could derive the fractal dimension of a single object
by measuring the same object at different scales or by varying the extent
or size of the object over which the dimension might be computed. In
essence, we will be adopting the first method here, that is taking a given
city and examining its physical properties at different scales in contrast to
the second method where we change the size of the given object; this we
will develop from Chapter 7 on. We can also derive the fractal dimension
of a set of objects by examining the size distribution of the objects in ques-
tion, and we will do this for individual land use parcels in Chapter 6 which
will extend the ideas of this chapter. If we have a set of objects, we could
also change each of their scales and simply combine all the scale-dependent
results and use the methods of this chapter to compute a fractal dimension
for the entire set. But for a set of objects, the most appropriate methods are
those which involve examining their size, not scale. In short, what we will
introduce in this chapter are methods such as those we presented in Chap-
ter 2 for deterministic fractals such as the Koch curve and we will apply
these to a single city, deriving its fractal dimensions from the lines which
compose its boundary.

Here we will use the town of Cardiff, which is the capital city of Wales,
as our example. Cardiff has a very distinct urban edge, and our problems
of defining its boundary are considerably less than in many other possible
examples. However, the boundary is a closed line, and without any knowl-
edge of fractal geometry, it seems intuitively obvious that such a line
implies an object with a dimension somewhat greater than one. Any layman
would probably associate the closed line with an area and argue that the
purpose of the line was simply to mark out the area. Common sense would
thus imply that resulting object was in the plane rather than the line. How-
ever, as we shall see, the measurement of the fractal dimension of these
closed lines yields values which are much closer to one than two, and which
are quite close to the theoretical Koch coastline where D =~ 1.262. What
these findings will impress is that the concept of fractal dimension is com-
pletely dependent upon what is being measured, or rather what physical
properties of an object are being selected for measure, and that there are
likely to be many different types and values of fractal dimension. We will,
of course, elaborate this important point throughout the rest of this book.

We will first discuss the way geographical boundaries might be rep-
resented before we move to outline the formal methods which we use to
derive the fractal dimension of a line. These methods are those which we
have already presented in Chapter 2 but they will be repeated again here
for we will adapt them somewhat differently to this context. We illustrate
the basic method for the case of Cardiff’s urban edge (in 1949) and this
serves to point up some problems of measurement and statistical method.
We then go on to outline the way these methods might be used to compute
the changing dimension of a growing city, using data from the growth of
Cardiff from the late 19th century to the middle of the 20th. To generate the
relevant dimensions, we will use four different methods of approximating a
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fractal line, namely, the structured walk, equipaced polygon, a hybrid of
both these, and the so-called cell-count which is a simplification of the well-
known box-counting method (Voss, 1988). Finally, we will draw these
results together so that we might extend them to measuring the boundaries
of different land uses in Chapter 6.

5.2 Cartographic ReEresentoﬁon and

Generalization of Geograp

As we demonstrated in Chapters 2 and 3, the most celebrated example of
a fractal is a coastline. Although the development of fractal geometry only
really took off after Mandelbrot’s famous paper in Science in 1967 where
he posed the conundrum of length in terms of ‘How long is the coast of
Britain?’, it was Richardson (1961) who first articulated the problem in these
familiar terms. Richardson demonstrated quite unequivocally that the
length of a coastline depended upon the yardstick or scale with which its
length was measured. As we illustrated for the Koch curve, he showed that
as the scale became finer, more and more detail could be picked up by the
measuring instrument, thus implying no bounds on its length. Although
Richardson did not formalize the concept of fractal dimension, which was
left to Mandelbrot (1967), he did derive the familiar log-linear relationship
between length and scale, and in estimating this, demonstrated that the
fractal dimension of coastlines ranged from around 1.02 for South Africa,
1.13 for Australia to 1.25 for the western shore of Britain.

As we also noted in Chapter 2, this conundrum has been remarked upon
for at least a hundred years, and it is likely that it was known in some
form to Renaissance geometers and thus probably to the Greeks. In the
1960s with the development of mathematical geography, Nysteun (1966) in
a seminal paper, not only identified the problem and suggested a solution
through the definition of length contingent upon the scale used, but he also
pointed to the work of the Polish mathematician Steinhaus (1954, 1960) and
geographer Perkal (1958a, 1958b) who had both reflected upon the paradox.
Perkal in fact drew attention to the work of the Viennese geographer Penck
(1894) who was familiar with the problem in the late 19th century. How-
ever, the problem was simply noted, and apart from some attempts at its
resolution with respect to associating length with explicit scale, there were
no attempts until Mandelbrot (1967) to pose it in a wider framework. It
would, in fact, have been remarkable had not the problem been posed in
countless guises throughout history, but it probably had to await the arrival
of computer graphics, hence fractals, before its universal import could be
appreciated.

What is fascinating is that the problem has never been restricted simply
to physical systems. Nysteun (1966) described the conundrum of length in
discussing the boundary of the town of Ann Arbor, Michigan; Perkal
(1958b) illustrated the same for the boundary of the town of Wroclaw in
Poland, while Richardson (1961) himself used political frontiers as examples

ical Boundaries
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of fractal curves. In fact, he derived the fractal dimension of the frontier
between Spain and Portugal as 1.14 and of the German land frontier in
1899 as 1.15. Although Mandelbrot (1983) developed his new geometry
mainly with natural examples in mind, he is strident in maintaining that
the geometry is applicable to artificial systems. He says in discussing the
amount of circuitry which can be packed onto a chip: “This and a few other
case studies help demonstrate that in the final analysis, fractal methods can
serve to analyze any ‘system’, whether natural or artificial, that decomposes
into parts in a self-similar fashion, and such that the properties of the parts
are less important than the rules of the articulation”.

That urban boundaries are fractal in some sense might already seem self-
evident, although we still have to demonstrate the point. There is, however,
another issue which dominates the definition of boundaries for geographi-
cal systems, and this involves the concept of ‘generalization’ as it appears
in cartography. Generalization is the process of aggregating cartographic
features which encompass a map, from one scale to another, and as such,
the various methods developed have often alluded to the problem posed
by the conundrum of length where cartographic lines are involved. In fact,
cartographers have made considerable progress in the search for methods
for selectively aggregating and filtering geometric detail as lines are
generalized from smaller to larger scales, and have, perhaps unwittingly
sometimes, invoked the geometry of fractals (Lam and Quattrochi, 1992).

In exploring the extent to which any boundary or line might be depen-
dent on scale, the process of generalization is likely to detect such variations
and thus its development is important to the measurement of fractal dimen-
sion in cartographic lines. Buttenfield (1985) has conceptualized it as
encompassing four related procedures and processes: first, simplification,
such as in the removal of unwanted detail and the smoothing of features;
second, symbolization, in which line character is graphically encoded
according to geographical and perceptual conventions; third, classification,
in which cartographic information is aggregated and/or partitioned into
categories; and fourth, induction, in which the creative logical assumptions
which are made during generalization are applied. As such, it is clear that
the depiction of cartographic information is the end result of a variety of
codification conventions mediated by a human judgmental process. This is
no less the case in the generation of computer-digitized data bases than in
traditional cartographic line-drawing (Jenks, 1981).

There are many types of method for line generalization. Buttenfield
(1985) develops a comprehensive classification and critique of such algor-
ithms including various random and systematic point weeding routines to
simplify detail, the fitting of various mathematical functions to lines, the
epsilon neighborhood concept based on linking line length to scale (Perkal,
1958a, 1958b), and the use of both angular and band-width tolerancing to
dispense with successive points which fall outside a prespecified angular
and/or band-width threshold (Peucker, 1975). She concludes that the choice
of method used can depend upon the often-conflicting emphases that differ-
ent studies have placed upon geographical and perceptual accuracy.

The measurement of shapes through boundaries has a long history in
natural science too and has also been absorbed into the locational analysis
tradition of human geography (see Haggett, Cliff and Frey, 1977). Many of



Urban Boundaries and Edges 169

the earliest shape indices were based upon simple length, breadth and area
relations. This was primarily because the constraints associated with time-
consuming manual measurement restricted the assessment of line structure
to simple indices of variation at selected points and to the monotonicity of
line segments about a base line anchoring the end points of the line. These
efforts were nevertheless well-motivated, since even fairly crude measure-
ments and classifications of form can enhance urban analysis. There are
numerous examples of such use. At an extreme, Thomson (1977) develops
simple areal density measures in order to classify the functional relation-
ship between transport infrastructure and urban form, while closer to the
ideas to be developed here, Benguigui and Daoud (1991) have undertaken
a detailed empirical analysis of the relationship between the form:of the
Paris suburban railway system and the distribution of the urban popu-
lation. As we demonstrated in Chapter 1, many of our conceptions of the
city, ancient and modern, are rooted in the idea that the geometry of the
city in terms of simple indices of shape can, in some way, be tied to its
functioning, and that to change or control its functioning involves manipul-
ating its geometry. In this sense, form follows function and our ultimate
aim in this book is to demonstrate how the new geometry of fractals can
inform this quest. In this chapter, we will begin by linking the shape of
cities to their boundaries.

In the present context, we suggest that most of these methods involving
techniques of generalizing lines or measuring simple geometric properties
of shapes are flawed in at least two fundamental ways. First, in a geographi-
cal sense, most are heavily reliant upon the a priori definition of the scale,
starting points and ending points of constituent line features for the syn-
thesis of total line structure. Second, in a perceptual sense, many algorithms
fail to preserve the qualitative visual character of a line in terms of its shape
when it is generalized (Muller, 1986). Seen in the context of the emergent
relationship between measurement and simulation of urban form, this
produces two grave shortcomings. First, it is not possible to specify a priori
those features which we expect to characterize urban boundaries, since their
inductive generalization remains one of the primary goals of the measure-
ment exercise. Second, if we are to derive visually acceptable space par-
titioning rules for land use simulations then our measurement parameters
must maintain perceptual accuracy in any of the lines which they are used
to generate. In this chapter, we will contend that use of fractal techniques
can provide a consistent and feasible route beyond this impasse, since first
by using very few parameters, the line can be measured as a total entity
rather than as a piecemeal amalgam of constituent features; and second,
the line’s visual character is preserved by using the concept of self-simi-
larity and by sensitive assessment of the range of scales over which the
fractal property holds.

Before we launch into the measurement task, it is important to reflect
upon the notion of exact or statistical self-similarity resulting from a single,
or small number of processes. Clearly this notion becomes increasingly
strained as we make the transition from physical to social systems where,
for example, urban edges clearly evolve under a wide range of simul-
taneous physical and social processes. At a theoretical level, many of the
more abstract spatial theories anticipate self-similarity, with central place
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theory being perhaps the best example (Arlinghaus, 1985). At a procedural
level, we might consider that at worst, the differences in the nature of self-
similarity between physical and social systems are of degree rather than
of kind. In such circumstances, there would be no rationale why fractal
measurement should not proceed in a similar manner to applications in
disciplines as diverse as particle science, mineralogy and music (Dearnley,
1985; Kaye, 1978; Mark and Aronson, 1984; Dodge and Bahn, 1986).

All such analyses depend critically upon isolating the most appropriate
range of scales over which any statistical property of fractals holds. For
example, it is likely to be the case that geographical features will revert to
man-made Euclidean dimensions at certain fine scales. Additionally, and
in all such instances, the cartographer is the arbiter, and to some extent the
architect, of the final depiction of the map feature, and any summary meas-
ure must ultimately be viewed in part as the outcome of a human judgmen-
tal process. In summary then, the measurement and generalization of carto-
graphic lines using fractals is likely to have a number of advantages over
other forms of representation (Muller, 1987) and there are grounds to antici-
pate that empirical evaluation of the fractal dimension “. . .may be the most
important parameter of an irregular cartographic feature, just as the arith-
metic mean and other measures of central tendency are often used as the
most characteristic parémeters of a sample” (Goodchild and Mark, 1987).
The rest of this chapter will be focussed on demonstrating how such dimen-
sions emerge as a natural consequence of the process of generalization.

5.3 The Basic Scaling Relations for a Fractal Line

The two basic relations for a fractal line associate the number of parts into
which the line can be divided, and its length, to some measure of its scale.
These relations have already been stated in equations (2.24) and (2.25)
respectively and we will proceed in analogy to these. First, consider an
irregular line of unspecified length R between two fixed points. Define a
scale of resolution r, such that when this line is approximated by a
sequence of contiguous segments or chords each of length r,, this yields N,
such chords. Now determine a new scale of resolution r; which is one-half
ro, that is, r; = ro/2. Applying this scale 7, to the line yields N, chords. If
the line is fractal, then it is clear that “.. .halving the interval always gives
more than twice the number of steps, since more and more of the self-
similar detail is picked up” (Mark, 1984). Formally this means that

-
%’% > 2 and r—‘l’ =2, (5.1)
This is illustrated for three different scales in Figure 5.1. Using equation
(2.25), the lengths of the approximated curves or perimeters, in each case,
are given as L, = Nyr; and L, = Not, and from the assumptions implied in
equation (5.1), it is easy to show that L, > L,. This provides the formal
justification that the length of the line increases without bound, as the chord
size (or scale) r converges towards zero.
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Figure 5.1. Approximating an irregular line and measuring perimeter
length at three adjacent scales.

The relationship in (5.1) can be formally equated if it is assumed that the
ratio of the number of chord sizes at any two scales is always in constant
relation to the ratio of the lengths of the chords. Then

Ny _ (r)?
N, - (”1) ’ .5

where D is defined as the fractal dimension. If halving the scale gives
exactly twice the number of chords, then equation (5.2) implies that D = 1,
and that the line would be straight. If halving the scale gives four times
the number of chords, the line would enclose the space and the fractal
dimension would be 2. Equation (5.2) can be rearranged as

N; = (Nor§) 11° = ari®. (5.3)

where the term in brackets (Nyr§) acts as the base constant o in predicting
the number of chords N, from any interval of size r; relative to this base.

From equations (5.2) and (5.3), a number of methods for determining D
emerge. Equation (5.2) suggests that D can be calculated if only two scales
are available (Goodchild, 1980). Rearranging equation (5.2) gives

D =log II\iI:) / log :—‘1} (5.4)

However, most analyses not only involve a determination of the value of
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D but also of whether or not the phenomenon in question is fractal, and
thus more than two scales are required. Generalizing equation (5.3) as in
equation (2.25) gives

N(r) = ar™ (5.5)

where N(r) is the number of chords associated with any r. Using logarithms,
we can linearize equation (5.5) as

log N(r) =log a — D log r. (5.6)

Equation (5.6) can be used as a basis for regression by using estimates of
N and r from several scales. The related formula involving the length of
the curve or perimeter L analogous to equation (2.25) is derived from equ-
ation (5.5) as

L = Nr = ar®D), (5.7)
Equation (5.7) can also be linearized by taking logarithms,
log L =log o + B log r (5.8)

where B = (1 — D). It is clear that the intercepts « in equations (5.6) and
(5.8) are identical and the slopes are related to the fractal dimension D in
the manner shown. In later sections, we will use equation (5.8) rather than
equation (5.6), for equation (5.8) will enable us to check the range of scales
used more effectively.

The original method used by Richardson (1961) to measure the length of
coastlines and frontiers involved manually walking a pair of dividers along
the boundaries at different scales and then determining D from equation
(5.8). To enable the entire perimeter to be traversed, the last chord length
which always finishes at the last coordinate point is generally a fraction of
the step size, and the step sizes used at each scale usually reflect orders of
magnitude in geometric relationship; that is r, = 4™ r,, 2 > 1, which enables
each step size to be equally weighted and spaced in the log-log regression.
In Richardson'’s (1961) research, about six orders of magnitude or scale were
used which is regarded as sufficient to determine a least-squares regression
line. Computer simulations of Richardson’s manual method are now well
established. Kaye (1978, 1989a) refers to the method as a ‘structured walk’
around the perimeter of an object, and he calls the log-log scatter plot of
perimeter lengths versus scale intervals a ‘Richardson plot’; this provides
a useful visual test of whether or not the phenomenon is fractal. The struc-
tured walk method is easy to implement on a computer, and here we have
used the algorithm developed by Shelberg, Moellering and Lam (1982)
which involves approximating the boundary of an object consisting of line
segments between digitized coordinates, with different sized chord lengths.

There are two variants involving this method. First, the number of chords
and perimeter lengths will depend upon the starting-point along the curve.
To reduce the arbitrariness of this variation, several workers have sug-
gested the structured walk be started at several different points, and aver-
ages of the results then formed (Kent and Wong, 1982). For example, Kaye,
Leblanc and Abbot (1985) start the walk at five different points along the
curves, but there is no reason why, in principle, the walk should not be
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started at each of the digitized points which define the base curve. In the
illustrative example which we will develop in the next section using the
digitized points of Cardiff’s urban boundary in 1949, we will initiate suc-
cessive walks from each of the 1558 digitized points which define the urban
edge, the walks proceeding in both directions towards the endpoints of the
boundary. This variation on the basic method is inevitably time-consuming
in computational terms.

The second variant involves starting the structured walk at different div-
ider lengths and generating sequences of predictions from these different
lengths. The range of scales over which the perimeter lengths were com-
puted varied from about half the average chord length associated with the
digitized data, to over the maximum distance between any two coordinate
points on the perimeter. The average chord length is computed as follows.
First, the distances between each adjacent pair of (x,y) coordinates, i and
i+ 1, are computed using the standard triangle equality
1/2

dijr = [(x; = Xi1)? + @/i = y,-+1)2] ,i=1,...,n-1, (5.9)

and then the perimeter L of the base-level curve which has been digitized
at resolution r can be summed as

n-1

L(r) =D, dia. (5.10)

i=1
The average chord length d of the original curve is therefore

L(r)

=, (5.11)

and a lower bound for the chord length used to start the approximation,
as suggested by Shelberg, Moellering and Lam (1982), is taken as approxi-
mately d. The maximum distance between any pair of coordinates, which
in fine particle science is referred to as Feret’s diameter by Kaye (1978,
1989a), is given as

F = max (d;;,1), (5.12)
i,i+1

and Kaye (1978), amongst others, suggests that an appropriate upper bound
for chord length approximation is ~F/2. The intermediate chord lengths
between these lower and upper limits should be ordered a geometrical
sequence so as to ensure more equal weighting in the regressions.

5.4 Estimating the Fractal Dimension: the Urban
Boundary of Cardiff

We have now presented sufficient method to derive our first example of a
fractal dimension for a city. In order to illustrate the procedure, we have
digitized the 1158 points composing the boundary of the town of Cardiff
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in 1949 which we show in Figure 5.2. This figure provides an excellent
example of the problems of measurement which we confront. As such it
represents a visual trace akin to the sorts of photographs physicists use
to search for the existence of elementary particles, but with an important
difference. The points which are defined in Figure 5.2 represent a series of
subjective judgements as to the level of detail needed to represent the
boundary at this elemental level. As the irregularity of the boundary varies
over its length, then more points in general are defined where more detail
is observed. It could be argued that we should represent this elemental
level at the same level of detail everywhere and this of course would occur
if, for example, a grid or other regular tessellation of the plane were used to
detect the boundary. However, such a grid would have much redundancy if
it were to detect the finest level of detail and therefore we have proceeded
on the assumption that it is important to present as much detail as possible
at the elemental level. As we shall see, some of the methods we use to
derive fractal dimension will be based on regular tessellations of the plane
but the problem of measuring ‘objective’ statistics such as fractal
dimensions in subjectively specified data sets will continue to concern us
throughout this book and we will return to it again in the sequel.

The boundary marking the extent of the urban area of Cardiff was
defined from the 1:25,000 Ordnance Survey map published in 1949. The
usual problems of definition were encountered in determining the edge of
the urban area, and several rules of thumb were invoked. Typically, allot-
ments and other urban fringe land-uses were excluded, villages linked to
the urban area by ribbon development were included, man-made alter-

Figure 5.2. The density of point digitization of the 1949 Cardiff urban
edge.
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ations to rivers and coast were included, but large landed estates which
subsequently become part of the urban fabric were included only if devel-
opment had surrounded them. The entire definition process emphasized
the obvious problems that urban processes and constraints operate at differ-
ent scales, and this casts some doubt on the fractal concept of self-similarity
in this context; but perhaps no more doubt than exists in other areas of the
physical sciences where fractal concepts have been shown to apply only
over restricted scales. Once the boundary had been defined, it was digitized
to within 1 mm resolution; the coastline contained some 900 points, whereas
the urban boundary was based on 1558 points. Figure 5.2 is thus a fair
representation of the land which by 1949 had become ‘irreversibly urban’
in character, and is consistent with other official standards for defining
‘urbanity’ (OPCS, 1984).

Figure 5.3 shows the digitized outlines as well as a coarse approximation
to the boundary produced by the structured walk method, which is about
30 times the scale of the original data. The approximating polygon touches
the original boundary at those points on the base curve which are retained
for the approximation, and all of the chords are of equal length except for
the end (residual) chord distance(s). The perimeter of the digitized bound-
ary determined from equations (5.9) and (5.10) gives L = 3104.456 units,
with the average chord length d = 1.993 from the equation (5.11), and the
Feret diameter F = 432.935 from equation (5.12). These measures are useful
to keep in mind when we discuss the relative merits of different fractal
measurement methods. We will deal first with the structured walk method.
For a given chord length used to start the sequence of predictions of per-
imeter lengths, a complete series of 10 chord lengths are used in the

Figure 5.3. A typical scale approximation to the digitized urban edge of
Cardiff.
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approximations, starting from the finest level of scale now given by r, and
moving to coarser scales r,. The sequence of chord lengths is computed
fromr,=2"V,n=0,1,... 9, where V is the start length which is always
a function of d, the average chord length. Thus, for example, where V =
d/2 which is the lower bound recommended by Shelberg, Moellering and
Lam (1982), the sequence of chord lengths used are in the following ratios:
31,2, 4,8, 16, 32, 64, 128, 256. In this case, r, = 1 and ry = 510 which is
much larger than Kaye’s (1978) upper bound of F/2. To provide some feel
for this range of approximations, we have plotted the approximated bound-
aries of Cardiff for r,, n =0, 1, ..., 8, in Figure 5.4. With r,, the boundary
is approximated by only one chord which is clearly inappropriate. Indeed,
even with 7, and 7, the approximations are too coarse to be of much use.
This is clear from Figure 5.4 which shows that this kind of visual test is
essential in selecting an appropriate range of measurements for use in the
subsequent regressions.

We will illustrate the issue of ascertaining the most appropriate scale

o =12d rp=d rp=2d

Figure 5.4. A sequence of scale approximations fo the urban edge.
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range for measuring fractal dimension by selecting 10 different starting
values of the chord length V, and generating ten sets of measurements for
each of these starting values. The values of V chosen are V = 0.44, 0.5d, 0.6d,
0.84, d, 1.5d, 2d, 3d, 4d and 5d. From the sequences generated, it is clear that
several of the chosen measurements are the same between series, but each
of the regressions developed below involves different sets of measures. A
visual comparison of each of the ten sequences generated is also contained
in the Richardson plots in Figure 5.5 which show the ten measures of log
L versus log r for each of the ten starting values of V. These plots are all
on the same scale for comparative purposes and also show the values of
d/2,d,F/2 and F.

Before we present the results of the regressions, we need to consider how
we can systematically narrow the range of results we are able to generate,
and to this end, we have devised five criteria. First, we have used the range
0.44 = r = F/2 to select those observations which are appropriate. Second,
we have used the Richardson plots to identify outliers for exclusion. In
particular, when r > F, then the algorithm always gives the same perimeter
length because it always closes the single chord on the last coordinate point.
Such points show up horizontally on the Richardson plots and must be
excluded. Third, the scale approximation must be acceptable visually. An
examination of Figure 5.4 suggests that approximations with ten chords or
less are not satisfactory in representing the overall shape, and thus must
be excluded. Fourth, we suggest that the r> measure of fit (coefficient of
determination) should always be better than 0.95, and fifth, the stan-
dardized variation in average perimeter length for each chord r should not
be greater than 10% of the mean value. This also enables poor approxi-
mations to be excluded.

For each of the 10 starting values of V in the structured walk, we have
performed regressions on all 10 points shown in the Richardson plots in
Figure 5.5, on the first nine, the first eight, seven, six, then five, below which
it is not appropriate to carry out such least-squares fitting. The absolute
values of the slopes of the regression lines |B| = (1 — D)| are shown in Table
5.1 along with the r? values, but as Shelberg, Moellering and Lam (1982)
indicate, such r? values should be used in a descriptive rather than an infer-
ential sense. In Table 5.1, the figures which are in bold type involve
regressions in which the observations meet all the five criteria mentioned
above, and this narrows the range considerably. Note that the fractal
dimension is given by adding 1 to the absolute slopes in Table 5.1, that is,
D=1+|B.

For the structured walk method, there is still a large variation in fractal
dimension from 1.155 = D =< 1.289, and from Table 5.1 it is quite clear that
as finer and finer scales come to dominate the regression, so the value of
D decreases. This implies that there is greater irregularity at coarser scales,
but it also indicates that where the scale is below the level of resolution of
the digitized boundary, that is, where r < d, then no further detail is picked
up and the boundary must be considered Euclidean. This is the case for
the first four starting values (first four rows) in Table 5.1, and if these are
excluded from consideration, the range of D is from 1.234 to 1.289. In fact,
the rule of thumb suggested by Shelberg, Moellering and Lam (1982) that
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Urban Boundaries and Edges 179

Table 5.1. Logarithmic regression of perimeter on scale associated with the
Richardson plots in Figure 5.5

Starting Number of observations?
values V!
10 9 8 7 6 5
0.4d 0.269 0.244 0.231 0.207 0.177  0.155
0.953 0.959 0.947 0.944 0.961 0.969
0.5d 0.278 0.258 0.255 0.236 0.211 0.180
0.969 0.975 0963 0956 0.956 0.975
0.6d 0.279 0.263 0.254 0.236 0.216 0.185
0.975 0.975 0.964 0.963 0.953 0.966
0.8d 0.292 0.291 0.266 0.254 0.231 0.198
0.976 0.966 0.973 0.962 0.957 0.974
d 0.291 0.297 0.276 0.278 0.261 0.234
0.982 0.977 0.983 0.975 0.967 0.963
1.5d 0.293 0.309 0.308 0.280 0.261 0.254
0.975 0.980 0.971 0.980 0.980 0.963
2.0d 0.282 0.304 0.315 0.293 0.303 0.289
0.969 0.984 0.982 0.989 0.987 0.979
3.0d 0.274 0.303 0.327 0.331 0.301 0.282
0.945 0.972 0.984 0.977 0.986 0.985
4.0d 0.254 0.284 0.313 0.331 0.306 0.328
0.924 0.958 0.981 0.983 0.989 0.996
5.0d 0.245 0.276 0.308 0.331 0.321 0.329

0.915 0.953 0.984 0.996 0.997 0.996

Starting values in each sequence of the structured walks.
ZNumber of observations of perimeter—chord lengths used in regressions. The first value in
each row—column is slope |B]; the second value in parentheses is 72.

V should begin at about d/2 should be reevaluated in future work so that
the variation around d can be considered.

5.5 Form and Process: Cardiff's Changing
Urban Edge

Boundaries which partition complex systems from their environment and
from one another reflect properties and processes which can be inferred
from their morphology, as Richter and Peitgen (1985) imply in the quote
introducing this chapter. For example, transport and building technologies,
social controls over development as well as physical constraints determine
the boundary investigated in the previous section, just as the shape and
form of the coastlines referred to in Chapters 2 and 3 reflect the action of
a variety of geophysical processes. If we were able to observe the change in
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boundaries through time, then this should give us some clue to the various
processes at work, and in this section, we will explore this issue with
respect to what the changing boundary of Cardiff over a 50 year period
implies for the urban growth of that city.

Thus far, we have seen how perimeter—scale relations may be displayed
as a Richardson plots as in Figure 5.5, and we have used such plots in
order to detect the range of scales over which it is appropriate to extract
information from a data base digitized to a given level of resolution. If a
fractal dimension is stable over many scales and the scatter of points about
a simple regression line is well-behaved (that is, close fitting), we can infer
that the morphology is consistent with a single set of processes operating
at every scale. In the case of an urban boundary, which evolves as a concat-
enation of a variety of processes, it is more plausible to anticipate that a
multitude of processes leads to the emergence of a particular fractal dimen-
sion. In fact, measurements of the fractal dimensions of boundaries, particu-
larly coastlines (Kent and Wong, 1982; Mandelbrot, 1967; Nakano, 1983,
1984; Richardson, 1961) and fine particles (Flook, 1978; Kaye, Leblanc and
Abbot, 1985; Orford and Whalley, 1983), have suggested that such phenom-
ena may be ‘multifractal’, that is, with different (in this case usually lower)
fractal dimensions at smaller scales. This is intuitively plausible in that we
might anticipate that different processes operate at different scales,
especially where man-made and natural processes combine (Kaye, 1984;
1989a). The importance of the fractal dimension thus lies in identification
of the range of scales over which processes operate and the different scales
at which such properties manifest themselves over time. It also enables
changes in the morphological effects of self-similarity to be explored.

Here we will develop the example used above in order to examine how
the irregularity of the boundary of an urban area changes at different scales
and through time. We will seek to use these measurements to infer changes
in the processes which condition urban growth in time and space. Reexam-
ining some of the graphs in Figure 5.5 reveals evidence of a slight curvi-
linear trend about the points in the Richardson plots, suggesting that a
multifractal (rather than conventional straight line, or log-linear) formu-
lation of the perimeter-step length/scale relationship may have been
appropriate in this instance. In focussing upon temporal changes in detailed
morphology, we have therefore increased the precision with which the
boundaries for this substantive analysis were digitally measured. We will
consider the urban boundaries of Cardiff in 1886, 1901 and 1922, but in
order to avoid ambiguity of interpretation we will not compare our results
with the 1949 digitized perimeter, since this data set was not digitized at
a directly comparable level of resolution. We do, however, show the four
boundaries overlying one another in Plate 5.1 (see color section) which
shows the town’s urban expansion, its extent and the changing irregularity
of the urban edge over time.

Just as the form of a coastline evolves as the outcome of a range of simul-
taneous physical circumstances, so the morphology of the city is the out-
come of a multitude of physical and social processes as we have already
implied (Batty, 1992). These include the technology of building, patterns of
land tenure, the size of building plots, the demand for residential space, the
mobility of the population, and the efficiency and availability of transport
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technology. These processes manifest themselves at different scales, for
example, building technologies at smaller, transport at larger scales. It is a
reasonable assumption that these processes are reflected in the boundary
of the city, hence in its degree of irregularity and fractal dimension (Perkal,
1958a, 1958b).

Accordingly, we will advance three hypotheses concerning changes in
the fractal dimension of these urban boundaries. First, we consider that the
boundary is multifractal across a range of scales; second, that as there is
greater control over physical development at smaller scales, the fractal
dimension is likely to decrease with scale; and third, that the fractal dimen-
sion at smaller scales should decrease over time as greater controls over
building technology and land development have been instituted. At larger
scales, it is less clear how the fractal dimension changes although increasing
mobility and accessibility imply it too will decrease through time. We will
test these hypotheses by determining the fractal dimensions of the urban
boundary of Cardiff in 1886, 1901 and 1922. These times have been chosen
because of the rapid urban growth of the city from a population of 80,000
to 230,000 during this period. This period also marked the development of
the tramway system which began in 1872 and was complete by 1914, and
it was the period when the predominant style of late Victorian worker hous-
ing gave way to more spacious suburban housing. The landed estates which
dominated the form of development in Cardiff in the mid-19th century
were no longer significant and the period represented the pinnacle of indus-
trial prosperity in Cardiff which was ended by World War I (Daunton,
1977).

The urban boundaries defined from 1:10,560 scale Ordnance Survey maps
in 1886, 1901 and 1922, which were digitized to'l mm accuracy, are dis-
played Figure 5.6, and overlayed in Plate 5.1. Considerable control was
exercised in digitizing to ensure the same level of detail was picked up

1886 1901 1922
—N—
0 1 2 i 4Km
] 2m
Number of perimeter points N = 2457 N =2757 N = 47565
Length of perimeter L = 30664 L. =30365 L =50213
Average chord iength L/N =12.480 L/IN=11.014 L/N = 10.560

Figure 5.6. The urban edge of Cardiff in 1886, 1901, 1992.



182 Fractal Cities

from each map, thus minimizing the possibility that the fractal dimension
becomes an artifact of the mapping process. Computing these dimensions
involves the same procedure as was outlined above in the previous section:
first the length of the perimeter of each boundary is calculated by simulat-
ing a traverse of the curve at different scales, and second, these perimeter
estimates are related to their associated scales using a curve fitting pro-
cedure which yields the fractal dimension. The perimeter L is measured
using a simulation of Richardson’s method of walking a pair of dividers
around the curve, the step length of the dividers 7 being a measure of scale
(Richardson, 1961; Shelberg, Moellering and Lam, 1982). Details of the way
in which the algorithm operates will be given below in the next section.

The two variants in the method described in Section 5.3 above have both
been invoked. First, successive measurements are started at every digitized
point on the curve and the perimeter taken as an average of each walk to
remove any dependence on starting values. The method is extremely time-
consuming, each pass of the method taking 65 minutes of CPU time for a
curve involving 4755 digitized points (the 1922 boundary), running on a
computer operating at 2 MIPS. Second, the scales used in each walk varied
from a step length r, computed as the average of the chords linking the
digitized points, to a scale which gave not less than eight chords, below
which any approximation to the boundary was deemed unacceptable in
accordance with the criteria developed at the end of Section 5.4. Thirty
changes in scale were used and each scale was related to the lowest step
length roby r,=2"V,n=0,1, ..., 30, where V is the parameter controlling
the geometric scaling related to 4 in equation (5.11). As in Section 5.4, these
scales ensure equal weighting of values in the log-log regressions based on
the log-log plots of perimeter against scale. These are shown in Figure 5.7
for each boundary.

As we have seen in Chapter 3, geophysical boundaries are characterized
by a wide variation in the value of D (Burrough, 1981), but for coastlines,
the value of D is likely to be less than 1.3 as first shown by Richardson
(1961) and confirmed many times since (Kent and Wong, 1982; Mandelbrot,
1984; Shelberg, Moellering and Lam, 1982). The slope o and intercept B are
once again determined by a linear regression of log L on log r as in equation
(5.8). Richardson plots describing the scaled perimeter measurements for
the three time periods in Figure 5.7 form the basic data for the regressions
and the results of fitting straight lines through these scatters are given in
Table 5.2. The fractal dimensions D decrease as hypothesized with the larg-
est falling in the period 1886-1901. However, both Figure 5.7 and Table 5.2
reveal that the phenomena are multifractal. It is impossible to identify clear
breaks in the slopes of the plots and thus approximating the plots by several
linear functions would be arbitrary. It would appear that the fractal dimen-
sion itself is a function of scale, and thus we have postulated that the scaling
coefficient B is determined as

B=X\+or. (6.13)
Substituting (5.13) into (5.8) gives
logL=loga+\logr+drlogr, (5.14)

from which it is clear that
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Figure 5.7. Richardson plots over many scales for Cardiff in 1886,
1901 and 1992.

Table 5.2. Scaling constants and fractal dimensions from equation (5.8)

Data set log a D=1-8 Goodness-offit
(r?)

1886 11.080 1.239 0914

1901 10.866 1.184 0.927

1922 11.393 1.185 0.907
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Table 5.3. Scaling constants and fractal dimensions from equation (5.14)

Data set log a D=1-2x bx 105 Goodness-offit
(when r=0) ()
1886 10.719 1.141 5.865 0.983
1901 10.622 1.117 3.947 0.985
1922 11.114 1.109 3.901 0.984
D=1-\-dr. (5.15)

As the scale r — 0, D — 1 — \. Thus the term ¢r log 7 in equation (5.14)
acts as a dispersion factor which increases the fractal dimension as the scale
increases. If ¢ = 0, then this factor which introduces the non-linearity into
the plots is redundant and equation (5.14) collapses back to equation (5.8).
The model is thus consistent with increasing fractal dimension with scale.

Regressions based on equation (5.14) are shown in Table 5.3 and the per-
formance of each model measured by r*> dramatically improves in compari-
son with equation (5.8) and Table 5.2. Changes in the fractal dimensions
based on equation (5.15) are plotted in Figure 5.8 from which it is quite
clear that the smallest scale dimension where r = 0, declines over time in
the manner hypothesized. The effect of scale given by ¢ also decreases over
time, and in both cases, the greatest decreases in A and ¢ occur between
1886 and 1901 when the greatest changes in transport technology — new
docks and tramways — were developed. These results are consistent with
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Figure 5.8. Predicted variations in fractal dimension over scale for the
1886, 1901 and 1992 data sets.



Urban Boundaries and Edges 185

the three hypotheses originally stated, although the decrease in the irregu-
larity of Cardiff’s urban boundary between 1886 and 1922 cannot be specifi-
cally attributed to changes in any single process of development. However,
the traditional image of urban growth becoming more irregular as tentacles
of development occur around transport lines is not borne out by this analy-
sis. It would appear that greater social and physical controls over develop-
ment in the late 19th and early 20th century city, together with increased
accessibility due to improvements in transport, have combined to gradually
reduce the irregularity of urban areas such as Cardiff. These results will
only apply to West European cities and similar analyses of North American
and other world cities are required. It is also tempting to speculate that
these results reflect the general notion of man’s increasing control over
environment, but such a conclusion should be avoided because there is
greater variation in the dimensions produced by different methods than by
different temporal data sets on the same city (Batty and Longley, 1987).

These empirical findings suggest that it is necessary to postulate fractal
models based on processes which operate at different scales and which thus
generate multifractal geometries. Nakano (1983) has indicated how this is
possible for a coastline, and Suzuki (1984) has demonstrated how such geo-
metries can emerge theoretically over time. These ideas involve the notion
of transient self-similarity and transfer the analysis to models of varying
self-similarity with respect to morphology and scale. In fact, since the mid-
1980s, there has been increasing concern for the concept of multifractals
and the notion that all physical objects are likely to imply a multitude of
fractal dimensions has become accepted as the basic notions of what consti-
tutes a fractal have been relaxed and broadened through empirical
examples (Feder, 1988; Stanley and Ostrowsky, 1986). In this context, it may
now be possible to examine detailed changes in the form of a city,
developing an incremental model of urban change in which changes in
shape through the boundary are associated with different processes, differ-
ent degrees of irregularity, different fractal dimensions, all persisting
through time, a theme we will return to in Chapters 7 and 8. For the
moment, however, it is sufficient to note that fractal dimensions of urban
boundaries are a function of scale. Other published data such as that per-
taining to coastlines, fine particle morphologies, indeed a host of other
related examples throughout the physical and natural sciences (Kaye,
1989a), should be reexamined in the light of this argument.

5.6 Fractal Measurement Methods Compared I:
the Structured Walk

Thus far, we have described how fractal dimensions are calculated for ‘real
world” or ‘empirical’ irregular curves, and this has been developed using
the analogy between automated computation and the manual process of
obtaining scaled measurements through dividers. The process of changing
the divider span with which a base curve is measured is, in fact, just one
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way of adjusting the scale or resolution at which that curve is measured.
In this and the following sections, we will first review the process by which
the divider-based measurement algorithm works, and will assess the accu-
racy and computational burden associated with its use. We will then
describe three other methods of measuring fractal irregularity and will dis-
cuss the relative merits of each with reference to the basic structured walk
method. We will evaluate each of these methods using the examples
introduced in Sections 5.4 and 5.5 above.

In his original application, Richardson (1961) manually ‘walked” a pair
of dividers along a mapped boundary, and obtained scale-dependent
measurements by systematically increasing the divider span. Shelberg,
Moellering and Lam (1982) were among the first to automate this procedure
with an algorithm designed to approximate a digitized curve using a pre-
specified range of chord lengths. In Section 5.4, we described how the initial
(base) scale length for each curve was computed by first calculating the
distances between each adjacent pair of (x,y) coordinates i and i + 1 using
equation (5.9). Successive scale changes were then incremented using a geo-
metrical progression of chord lengths. In our later examples, we specified
criteria to define the maximum and minimum chord lengths to be used in
the measurement process, and interpolated 30 scale changes across the scale
range bounded by these two extremes.

The walk at any given scale begins by calculating the distance 4;; from
a starting point (x,, ¥,) to the second coordinate pair (x; ;) using equation
(5.9). If this distance is less than the chord length r, the next coordinate pair
(%41, Yir1) is selected, the distance d,;,, is computed and the test against
chord length r is made again. This process continues until the distance d;
> r and when this is achieved, a new point (x,,;, ¥s.1) is interpolated onto
the line segment which joins points (x;.x1, Y1) and (Xix ¥i). The walk
then recommences from this interpolated point and proceeds through
painstaking use of trigonometry to span the curve with chords of exactly
length . As the end of the curve is approached, the distance between the
last interpolated point and the end point will invariably be less than r; in
this instance, a fraction of the chord length r is computed in order to close
the interpolated curve. Measured perimeter lengths (L) at any scale (r) can
be obtained from any starting point on the digitized base curve; if the walk
begins other than at either the end points, the interpolation proceeds along
the curve in both directions and the final recorded length is the sum of
these computed values. As stated previously, the empirical measurements
recorded in the Cardiff example comprise the average of the lengths meas-
ured from every possible starting point on the curve, repeated, of course,
for every scale change.

The rudiments of this procedure are given visual expression in Figure
5.9(a) and (b) and in Plate 5.2. The displays in Plate 5.2 are of the 1949 urban
edge and were produced using an interactive version of the structured walk
algorithm. In this algorithm, the user specifies the initial and final chord
lengths (the former as a percentage of mean chord length on the base curve,
the latter as an absolute value), the starting point on the base curve, and
the number of generalizations (levels) that are to be produced using the
walk algorithm. Screen annotation for each level records (from the bottom
line to the top) the chord length to be interpolated onto the base curve, the
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Figure 5.9. The mechanisms underlying the four measurement methods.
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measured perimeter of the curve at this scale, and the number of (complete
or partial) traverses that are necessary to close the curve on its end points.
The sequence of displays allows the user to gain a visual appreciation of
the manner in which measured perimeter lengths (and number of chords)
decrease as scale increases, and could also assist a decision on the level of
fractal detail most appropriate to the storage and display of a given
digitized data set.

We have recorded the computer time required to make repeated
measurements of the 1949 urban boundary information used in Section 5.4
as well as the 1886, 1901 and 1922 data used in Section 5.5. Scaled measure-
ments for each of the four data series are shown together in Figure 5.10,
and the range of scales common to all four analyses are highlighted here.
The rate of increase in CPU time in relation to increased numbers of digit-
ized points is shown in Figure 5.11. In order to compare the methods, we
have fitted both of the functional forms (5.8) and (5.14), and the results for
this basic structured walk are shown alongside the CPU times in Table 5.4.
One of our earlier substantive findings was that a ‘transient dimens’on’
model (in which fractal dimension is itself a function of scale) was appr(‘;prl-
ate to the measurement of urban boundaries and these results are presnnted
in summary form in Table 5.4, together with the computer processing ‘times
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Figure 5.10. Richardson plots of perimeter-scale relations from the structured walk method.
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Table 5.4. The structured walk method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

Log o D 2 log a 1-\ éx 103 I
1886 0:15:23 11.080 1.239 0.914 10.719 1.141 5.865 0.983
1901 0:19:11  10.886 1.184  0.927 10.622 .17 3.947 0985
1922 2:07:10  11.393  1.186  0.907 11.114 1.109 3.901 0.984
1949 0:07:49 12.150 1.267 0.975 11.883 1.211 1.202 0.991

associated with each of the analyses. The r*> values show that the transient
dimension model produces a consistently better statistical fit than the stan-
dard log-linear form for every one of the four time slices under analysis.

The Richardson plots shown in Figure 5.10 illustrate that the structured
walk method produced estimates which correspond closely to this func-
tional form, with the clearest continuous trend being discernible for the
smaller step lengths. Although the positioning of the points does become
slightly more erratic for the largest step lengths, there is no evidence of any
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sudden ‘flattening’ of the curve, which would have indicated that the scales
were too coarse to pick up further fractal detail. This cohesion of the larger
scale points about the best fitting functional form is the result of the averag-
ing of each scale observation through measurements from every single
possible starting point. Finally, Figure 5.11 shows that the structured walk
method is consistently associated with the highest CPU usage of the four
methods to be described here. This is a consequence of the precise trigono-
metric interpolation of points upon the base curve. It might be conjectured
that this precision obviates the need to average out the measured perimeter
lengths by using every conceivable starting point, although the decay in
the trend in the points at larger scale steps suggests this is not necessarily
the case.

5.7 Fractal Measurement Methods Compared |I:
Equipaced Polygon, Hybrid Walk and

Cell-Count Methods

The structured walk method provides a precise means of calculating the
fractal dimensionality of vectorized boundary data. As we have seen in
Chapter 2, fractal measurement and compression provides a general and
powerful means of storing coordinate information. It can be used on infor-
mation stored in both vectorized and rasterized formats, and its use in
association with these different data structures can make alternative
measurement methods more appropriate. Moreover, data processing
requirements for large data sets can make computer processing time an
important consideration in devising measurement algorithms. Three such
alternative measurement procedures are the equipaced polygon, hybrid
walk and cell-count methods. In this section, we will describe their compu-
tation and evaluate the comparative performance of each using the Cardiff
urban edge data. Repeated averaging of measurements is carried out as
earlier, and similar ranges of scale changes are also used.

The equipaced polygon method was first suggested by Kaye (1978, 1989a)
and elaborated in Kaye and Clark (1985) as a measurement method in
which there is no need to compute new base-level points. The first per-
imeter length for the sequence of scale changes is computed by summing
the distance between adjacent coordinates; the second perimeter length rep-
resents the summed distance between every second coordinate; the third
sums the distance between every fourth coordinate; and so the progression
continues, weeding out all but every 8th, 16th, 32nd, ... point. This geo-
metric point weeding series is contrived so as to give observations a more
equal spacing in the Richardson plots, and hence a more equal weighting
in the regression analysis. In terms of the Richardson plots and regression
analysis, the chord length r which is to be paired with an associated meas-
ured perimeter length is given by the average chord length spanning the
points at the corresponding level of the point weeding sequence. This is
illustrated in Figure 5.9(c).



Urban Boundaries and Edges 191

Formally then, a direction is established from a given starting point on
the base-level curve (x;, ;) and a chord is constructed to a digitized point
(Xistr Yizr) Which is k steps away from (x;, y,); k is thus an index of scale. The
distance d;;,; is computed using equation (5.9), and then the next chord
involving the point (X;,ok, Yis2x) is constructed from (x;,4, ¥i.x). Eventually the
endpoint of the base-level curve is approached, and the level k curve is
closed on this endpoint when the remaining number of base points is less
than step length k (this is equivalent to the ‘remainder” as described for the
structured walk). Computations in both directions from the starting point
are added to determine the perimeter and mean chord lengths.

The Richardson plots from the Cardiff data which are associated with
this method are shown in Figure 5.12 and the results of regression analysis
in Table 5.5. At an intuitive level, one might anticipate that this method
yields results of a slightly more arbitrary nature, because exact perimeter
lengths will be dependent upon the evenness with which the base curve
has been digitized. For example, points are unlikely to have been “forced’
on long straight sections, so these sections are unlikely to contain chord
end points; moreover, the entire shape of a measured curve is likely to
change if the base curve contains major irregularities or fissures (for exam-
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Figure 5.12. Richardson plots of perimeter—scale relations from the equipaced polygon

method. ®: observation falling within scale range common to all four temporal data bases,

1886, 1901, 1922 and 1949.
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Table 5.5. The equipaced polygon method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

log « D 2 log 1= dx10°° r
1886 0:00:36 11.176 1.236 0.875 10.589 1.086 11.200 0.995
1901 0:00:45 10.923 1.178  0.917 10.594 1.094 5.920 0.994
1922 0:02:09 11.420 1.172  0.902 11.078 1.085 5.187  0.992
1949 0:00:20 12.342 1.293  0.992 12,132 1.250 1.211 0.998

ple, lines bounding suburban communities connected to the main urban
area by ribbon development) which will be detected abruptly at a shift
between two scale changes. The equipaced polygon method was particu-
larly susceptible to such phenomena, since the measured curve could sud-
denly dislocate when the point weeding criteria missed some fissured
points for the first time. Figure 5.13 shows an example of this susceptibility

Figure 5.13. Sudden changes in approximation at two adjacent scales
using the equipaced polygon method.



Urban Boundaries and Edges

193

at two adjacent scales. In fact, the Richardson plots show that this effect is
removed by the averaging process, and the points actually follow a clearer
trend than the structured walk plots. The regression results compare
directly with the structured walk results, both in terms of measured fractal
dimensions and the statistical fits of the two competing functional form
specifications. The biggest apparent difference between the two methods
seems to be CPU usage as seen in comparing Tables 5.4 and 5.5, in that the
equipaced polygon method used less than 5% of the resources required for
the structured walk in a fully averaged run. However, intermediate poly-
gon plots are more erratic than those for the structured walk when full
averaging does not take place.

The second alternative method is the hybrid walk which was suggested
by Clark (1986) as a method which retains some favorable characteristics
of both the structured walk and the equipaced polygon methods. It is based
directly upon the same prespecified geometric chord length series as the
structured walk, which makes it less vulnerable than the equipaced polygon
method to the spacing of points on the base curve. However, it is similar
to the equipaced polygon method in that no new points are interpolated
onto the base curve; rather, each chord is either extended or contracted to
coincide with the nearest digitized point, which is then used as the origin
from which the next chord is sought. Removal of the time-consuming trig-
onometric interpolations thus serves to speed up the computations. It is
based on the same lowest level of resolution 7, as the previous two methods
and entails similar treatment of the ‘remainder’ distance as the end of the
curve is approached. This is illustrated in Figure 5.9(d).

Formally, the method proceeds in the same way as the structured walk,
except that when a point (¥;.4, ¥:.4) is reached where d, ;.. > 7, no new point
is interpolated using the Shelberg-Moellering-Lam algorithm. If |d ., — 1|
< |d -1 — 1|, then point (.4, Vi) is selected; if not, then the point (x4,
Yiska) is selected, because this point is the closest to the point at which
chord length r intersects the base curve. The Richardson plots associated
with this method illustrated in Figure 5.14 show a similar pattern to those
of the structured walk method in Figure 5.4. The analytical results given
in Table 5.6 are also comparable with the first two methods, although the
method is unable to discriminate between the log-linear forms of the 1901
and 1922 series. The graphs of CPU usage in Figure 5.11 show that only
comparatively modest savings are made compared to the structured walk
method, and the equipaced polygon method remains the least demanding
by far in this respect.

The final method that we will consider is the cell-count method. This
method is more akin to a rasterized conception of the digitized base curve
and has been suggested by a number of authors (Dearnley, 1985; Goodchild
1980; Morse et al., 1985). In effect, the computer algorithm imposes a square
lattice for a range of different spacings on the base curve. The spacings of
the different lattices introduce the sequence of scale changes over which
the irregularity of the base curve is to be measured. At each scale (grid
spacing), the cell-count algorithm simply enumerates all of the cells that
the base-level curve passes through. Counts are made at each scale change
for grids originating at each point on the base curve: these are averaged to
produce the final observations for each scale change in the now familiar
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Figure 5.14. Richardson plots of perimeter-scale relations from the hybrid walk method. e:

observation falling within scale range common to all four temporal data bases, 1886, 1901,
1922 and 1949.

Table 5.6. The hybrid walk method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation {5.8) equation (5.14)

log a D g loga  1-A  éx10° 2
1886 0:12:34  11.119 1.248 0.913 10.715 1.137 7.256 0.987
1901 0:15:52 10.895 1.190  0.929 10.633 1.117 4.560 0.990
1922 1:21:56  11.412 1.190  0.906 11.111] 1.106 4.567 0.989
1949 0:06:52 12416 1.308 0.989 12.197 1.262 1.001 0.996

way. Strictly speaking, each grid scale should be defined with respect to
the start and endpoints on the base-level curve, although for reasons of
convenience and comparability, the empirical results reported and depicted
below are based on the same 31 scales used for the structured and hybrid
walk methods. This is illustrated in Figure 5.9(e). This cell-counting pro-
cedure is related but not identical to box-counting, and its associated
dimension, the box dimension (Voss, 1988). Falconer (1990), however,
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includes all four of the techniques introduced here under the broader head-
ing of box-counting to distinguish these from spectral methods for comput-
ing dimension which we alluded to in Chapter 3.

Formally, from a given starting point (x,, y,) with a selected cell size r
and direction of traverse, the next coordinate (x; y;) on the base curve is
alighted upon. A test is made to see if this point lies within the same cell
by considering whether |x, — x| = r or |y, — y| = r. If either of these con-
ditions hold, a new point is established where the coordinate in question
is updated in the direction of greatest increase. Thus if |x, — x| = |y, — v,
Xse1 = X5 + 7 and y,,; = Y, whilst if the converse holds, x,.; = x, and y,.; =
ys + r. If the increase along both the x and y axes is less than the grid size
7, then a new coordinate point (x;,;, ¥:.1) is selected and the tests are made
once again. Each time the direction is updated, a cell has been crossed and
is thus counted. Unlike the previous methods, when the end point of the
curve is approached, the cell approximation simply finishes when the cell
in which the end point exists has been identified.

The way in which this procedure works is illustrated in Plate 5.3 where
the aggregation shows that the intricate form of the line is lost at an early
stage in the cell-count process. It is for this reason that the method has
been advocated as a computationally inexpensive first approximation to
measurement. Figure 5.11 shows that the cell-count method is closest to the
equipaced polygon method in its meager CPU requirements. Although the
Richardson plots shown in Figure 5.15 exhibit generally smooth trends,
there is some evidence of the ‘bottoming out’ of the curves at the coarsest
scales. This indicates that the method does not detect fractal detail at these
scales, despite the averaging that has taken place. Although the choice of
starting point makes little or no difference to the results when the base
curve is being traversed in very small increments, Figure 5.16 shows that
this is not invariably the case for large step increments which only crudely
approximate the curve. Such measurements are highly sensitive to the
lengths of the residual steps which are left at a fairly coarse resolution using
the cell-count method. This is illustrated in Figure 5.16 where the outline
initiated at coordinate 456 (Figure 5.16(a)) is very different from that
initiated at coordinate 1234 (Figure 5.16(b)). Largely because of this, the
fractal dimensions and statistical fits shown in Table 5.7 bear less direct
comparison with the other methods than has been the case in the pre-
vious sections.

5.8 Beyond Lines to Areas

The algorithms described in this chapter have been used to investigate a
wide range of physical phenomena (Burrough, 1984), but rarely has the
irregularity of artificial boundaries been investigated. The preceding sec-
tions have illustrated that fractal measurement provides a plausible and
flexible means of detecting the structure and character of cartographic
boundaries, while our substantive example suggests that the processes
which structure urban form and urban edges might be investigated with



196 Fractal Cities

Log perimeter (in L)

1 -
1901

11l 114

. °°oooo°° N °°Ooo°°°

®ee, ". oe "..‘.
10- 10 "o,
.. ...
. ..’. . ..‘.'-
'---.
°2 T SR I R I
1949
“eees,
17 °°°°°ooo. 11 ..'O.o
LT %,
T e,
] ‘ee. 1 ‘e,
.‘. ..
':- ®eoo
10- V". 10' o
T T ~— 9 T L L T

%2 4 6 8 2 4 6 8

Log chord length (In r)

Figure 5.15. Richardson plots of perimeter~scale relations from the cellcount method. e:

observation falling within scale range common to all four temporal data bases, 1886, 1901,
1922 and 1949.

respect to the manifest fractal irregularity which characterizes different cit-
ies in time and space. This latter objective might be accomplished by having
regard to what urban theory suggests about the concatenation of processes,
but also by recognizing different types of irregularity at different scales and
over different ranges of the same phenomenon. Historical variations in frac-
tal dimension are indeed likely, for the development of cities has been influ-
enced by processes whose form and scale has changed over time. Whilst
fractal methods can be used to generate ‘semi-realistic’ tessellations of the
plane in order to facilitate routine spatial forecasting as we demonstrated
in Chapter 4, such measurements are likely to be more useful in developing
appropriate physical theory for cities. We will return to this issue of reconci-
ling form with function in later chapters.

Describing the fractal form of cities from cartographic lines which mark
their edge is perhaps the most simplistic approach we can take to linking
form to function. Although it is clear that planned cities are likely to have
dimensions which are integer in contrast to the organically growing cities
whose irregularity gives fractional dimension, urban boundaries simply
provide the envelopes for urban form and as such give little clue as to how
much of the two-dimensional space is filled by the city. Envelopes do not
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(a)

(b)

Figure 5.16. Variations in shape approximation using different starting
points for the cell-count method.

Table 5.7. The cellcount method: computational costs and statistical performances

Data CPU usage Log-linear form Transient dimension model
set Day:h:min equation (5.8) equation (5.14)

Log o D r log a (DY dx10-° I
1886 0:03:04 11.326 1.267 0.953 11.109 1.207 3.525 0.973
1901 0:03:51 11.079 1.200 0.967 10.919 1.156 2.592 0.989
1922 0:11:30 11617 1209 0957 11.426 1.156 2.686  0.988
1949 0:01:37 12.288 1274 0.985 12.144 1.244 0.646 0.990

pick up the detailed texture and irregular fabric of urban development and
thus offer little by way of linking dimension to the density of development.
We will in fact explore these notions from Chapter 7 onwards where we
will switch our focus away from boundaries to cellular development where
the focus will be upon density, occupancy and area rather than upon lines
and edges.

In Chapter 10, we will return once again to questions of the urban bound-
ary, but then we will explore the way boundary length and area are related
across different sizes of city, in this way seeking to model the relation
between area and perimeter and deriving fractal dimensions which pertain
to different size classes of city. Here, however, we will continue to explore
the fractal form of single cities, and to this end, we will examine the pattern
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of land uses which occur within the urban envelope, seeking to generate
the fractal dimension and properties of sets of different land use. The notion
that boundaries and edges do not exist in their own right but simply serve
to define space by marking off different regimes from one another, while
closing some from others, is central. In the next chapter we will examine
the patterns of several sets of land uses in a small English town, measuring
their boundaries and computing their fractal dimensions, but with the
explicit intention of exploring the extent to which we can relate boundaries
to areas through the area—perimeter relations which enable the dimension
of sets of objects rather than a single object to be computed. However, in
providing an unambiguous link between boundaries of entire cities and
their areas, we will have to wait until the last chapter before we tie together
these ideas formally and empirically. In the meantime, we will disaggregate
not aggregate our spatial focus, exploring land use inside the city rather
than relations between cities of different sizes.





