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Laboratories for Visualizing
Urban Form

When I wrote the program, I never thought that it would evolve anything more than
a variety of tree-like shapes . . . nothing in my 20 years’ experience of programming
computers, and nothing in my wildest dreams, prepared me for what actually
emerged on the screen. I can’t remember exactly when in the sequence it first began
to dawn on me that an evolved resemblance to something like an insect was poss-
ible. (Dawkins, 1986, p. 59.)

4.1 Experimentation as Visualization

The understanding we have already gained about the systematic irregu-
larity of fractal shapes creates a very strong case for judging the success of
models by their visual appearance. For example, it is easy to conjecture that
the physical properties of land use in terms of plot size, shape and density
display an irregularity which is considered to be fractal. From earlier chap-
ters, we know that cities are self-similar in a variety of ways, central place
theory being the clearest demonstration of this principle (Arlinghaus, 1985).
Thus the idea that actual city structures might be fractal is appealing, but
of more import is the possibility that fractal geometry may well contain the
basis for linking activity models to their physical context. However, before
we launch into the use of fractal geometry in rendering traditional com-
puter models of cities more realistically, we need to formally consider how
we might develop this understanding further through designing a consist-
ent and structured set of experiments for the hypothetical model we intro-
duced in the last chapter. Our ‘London’ sequence provides us with such a
model with a strictly limited number of parameters whose variation will
generate different urban forms. Here we will extend this model and in a
laboratory-like setting, we will manipulate the values of its parameters so
that we might explore the complete set of forms which can be generated.
The parameter space which bounds this set we will treat as a mathematical
space populated by different forms which can be derived from one another,
and we will call this the ‘space of all cities’. In this space, we will exper-
iment with city patterns whose forms we will assess and evaluate visually,
thus establishing a process of experimentation through visualization and
vice versa.

Our experiments will consist of sampling different urban forms from the



Laboratories for Visualizing Urban Form

131

space of all cities, and simply involve a conventional selection based on
different combinations of the limited set of parameter values. The hypo-
thetical models based on our ‘London’ model from Chapter 3 and which
we will explore in the next section, will contain a very limited number of
parameters. Such models must reflect the principle of parsimony so that
there can be a clear assessment of the effects of different parameter values.
Furthermore, throughout this book, we will deal with highly simplified
models which in no way approach those operational urban models which
are used in the real world by planners and engineers involved in forecasting
and designing the future city. Moreover, because our models, although
highly structured, are random in that land use is allocated through chance
events, we are dealing here with urban forms which portray a general
typology of cities rather than anything which is more specific. Indeed in
the very title of this book Fractal Cities, our emphasis is not upon thinking
of some cities as being fractal in contrast to others, which are not, but that
all cities display structures and patterns which in certain senses might be
fractal, and it is our emphasis on the degree to which their form is fractal
which can provide important insights into their functioning.

In the study of form through computer experiments, it is the way certain
shapes evolve relative to some baseline which is our essential quest. In one
sense, this is the principle which has been used for nearly a century in the
study of the evolution of biological forms first exploited by D’Arcy
Wentworth Thompson (1917, 1961). His view is cogently illustrated when
he says: “In a very large part of morphology, our essential task lies in the
comparison of related forms rather than in the precise definition of each;
and the deformation [his italics] of a complicated figure may be a phenom-
enon easy of comprehension, though the figure itself has to be left unana-
lysed and undefined”. Thompson's point is of general import to our work
here. We can begin as we did at the end of the last chapter with a theoretical
model of a city based on the concentric rings of land use around the city’s
center, the land use being defined according to von Thunen’s bid-rent prin-
ciples which are implied in the land use profiles shown in Figure 3.13. By
systematically changing a parameter value, the shape of the city can be
deformed or reformed to another, and by systematically charting this defor-
mation, we are engaging in the time-honored tradition of experimentation
in which different responses in terms of form are being generated by chang-
ing one parameter value at a time. The space in which this occurs is what
we have termed the ‘space of all cities’.

We have continually alluded to such experimentation in previous chap-
ters. For example, if we have a model whose form is defined in two-dimen-
sional space, in the plane, by various transformations of its x- coordinates,
then as these transformations vary in value, so does the shape which is
generated. We noted this in Chapters 2 and 3 where we briefly described
how a Koch curve could be related to a Julia set in 2-space using Barnsley’s
(1988a) IFS method. By interpolating between the transformation values for
both objects, we indicated that one object could be slowly transformed into
the other. The intermediate forms generated represent the visual trace or
trajectory of this process. Whether or not this transition is meaningful will
of course depend upon our choice of objects or systems. Here we will not
map the complete range of possibilities but simply select some forms which
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appear to be good bounds to the space in which our family of cities exists.
In fact, an extension to our-laboratory which we have not yet developed,
could be based on a process in which one form actually evolved to another,
the decisions concerning the evolution consisting of single small changes
to the parameter values being made by the user on the basis of some visual
assessment of the appropriateness of the form. The quote from Dawkins
(1986) which prefaced this chapter is based on his response to such a pro-
cess which initially produced tree-like forms, but through judicious selec-
tion of changes in parameter values one at a time, ultimately led to insect-
like forms. Dawkins’ surprise was over the fact that the kinds of parameters
which characterized trees, such as branch orders, widths, bifurcation ratios,
branch angles and so on, could quickly develop to shapes which were mani-
festly insect-like. His amazement is no different from that of the transition
between a Koch curve and a Julia set as well as the sorts of deformation
between biological systems which was first popularized by D’Arcy Thomp-
son (1917, 1961). We will not develop these possibilities further, but there
is considerable potential in our field for such evolution through experimen-
tation, and this represents an important area of work for the future.

In Chapter 1, we introduced, albeit informally, many different examples
of urban form, far wider than we will explore here. Later in this book, we
will eventually develop more fundamental fractal models, and this will give
us some scope for generating a massive variety of urban forms, but these
we will leave until Chapter 7. However, at this stage, it is worth reiterating
the range of forms which are possible with our ‘London” model so that the
experimental work of the next section can be put in context. There are a
series of dichotomies which characterize such forms. First there is the dis-
tinction between monocentric and multicentric cities. The monocentric tend
to be industrial cities in that their development in terms of commerce and
industry has been centered in and around the CBD, and this is contrast to
those multicentric cities where there are several dispersed centers which
compete with one other. Multicentric cities characterize the presently
emerging post-industrial age where the power of the CBD is no greater, if
not less, than many peripheral centers. But there are also multicentric cities
which have developed as the fusion of several separate industrial cities;
these are called ‘conurbations” by Geddes (1915, 1949), and ‘megalopolis’
by Gottmann (1961) and Doxiadis (1968).

Overlying these distinctions is the notion of concentrated to dispersed
which is loosely akin with high to low density cities. Centralized and
decentralized also follow this classification, and there are more specific
terms such as the ‘exploded’ city and the ‘imploded” which represent grow-
ing and declining monocentric forms. The classification of form in this way
presents an endless array of different characterizations which are all seman-
tically a little different, but in general, cover a range from concentrated to
dispersed. Moreover, there are distinctions which overlie these in terms of
shape, from linear to concentric, almost mirroring our distinction between
one- and two-dimensional forms which we portrayed in Chapter 2, as for
example in Figure 2.10. In our experiments which follow, it is essential that
we appreciate the bounds which make possible only a restricted set of
forms. In essence, the space of all cities which we define only includes
monocentric cities which develop around a single pole or CBD. We will see
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how various cities which are concentrated or dispersed can emerge through
changes in the way the chance elements operate on land use allocation; this
may suggest some multicentric form, but this is still within the bounds of
the monocentric assumption and is caused by chance locations of centers
which are not related to the CBD. The way we construct our cities is on
the assumption that all development is arrayed concentrically around the
CBD, and this rules out the possibility of linear cities emerging. This will
only be possible with our more fundamental models which we develop
from Chapter 7 on.

Finally, there is the possibility that cities might be classified according to
the form of their transport networks, usually in terms of the distinction
between radially symmetric nets and ‘Manhattan’ grids. We will not pursue
these types of form either, largely because we are continually conscious
that the number of parameters which we can deal with and from which
we can derive meaningful conclusions must be severely limited. This is not
a book about theories of cities. As Crick (1990) says: “The job of the theorist

. is to suggest experiments”, and the experiments we will choose are
those which are naturally suggested by simple theories of the monocentric
city which still compose much of urban economics. We will be content to
explore the role of chance in land use allocation and in the shape which
such locational patterns display, rather than being concerned with elaborat-
ing new or existing theory. We have resisted extending our approach to
multicentric urban systems and to models based on spatial interaction, larg-
ely because we view our task here as simply a beginning. Moreover, we
are conscious that most urban economic theory has also been developed
using the monocentric assumption and thus there is more than enough
research to develop in first linking fractal patterns to these theories. It is
always tempting to add more and more constraints to the models to reflect
how cities actually work. Here, however, our concern is not with
developing completely realistic models of cities, but with demonstrating
that an approach through fractal geometry leads to important insights into
their form and functioning.

To set the context, we will also note the idea that the model-building
process is based on the loose cycle of inductive explanation, and deductive
prediction. For example, some models such as those based on discrete cho-
ice are strongly inductive in their specification and estimation, while spatial
interaction models are usually specified a priori, and are hence deductive.
Proponents of either style of modeling rarely pursue the inductive-deduct-
ive cycle in any complete sense, but the argument here suggests that fractal
simulation can provide a framework for such a process. Large-scale simul-
ation itself establishes such a framework, but there are few attempts which
model the entire cycle. The work of Chapin and Weiss (1968) is an exception
in that they attempted to explain urban growth using a linear statistical
model and then reproduced that growth as a large-scale random simul-
ation. The ideas of this and the last chapter are very much in this spirit but
in attempting to model the entire scientific cycle, a number of corners will
be cut and only picked up as items for further research.

Another issue which first emerges in this chapter relates to the variety
of computer systems and software used to develop these fractally-rendered
models. Our work has only been made possible through advances in



134 Fractal Cities

computer systems and software, and our demonstrations involve a remark-
able mixture of computer and modeling systems and styles. The discrete
choice models we use, for example, are estimated using a standard logit
package mounted on a mainframe computer, with intermediate processing
on a minicomputer which acts as the front end to yet another mainframe
on which the spatial mapping is conducted, while the simulations are con-
ducted using a graphics-based micro whose memory is mainly given over
to the screen display. In fact, these styles are seen quite clearly in the figures
in this chapter and in the various color plates in which the spatial predic-
tions produced for the discrete choice models are presented using standard
plotter outputs, in contrast to the simulations which are illustrated in photo-
graphs of the raster graphics screen reproduced in the various color plates.
Indeed throughout this book, the examples presented have been computed
on micros such as PCs and high school computers, Vaxes, Sun workstations,
IBM mainframes and so on. Clearly the availability of various machines
has influenced what we have used, but it is important not to lose sight of
the fact that fractals can be computed using very simple computer pro-
grams as Saupe (1991) has noted. Thus the ideas portrayed here should be
accessible to a wide variety of readers with different programming skills
and with access to very different types of computer.

After extending our hypothetical simulation model, we will take one step
back and briefly introduce the model-building process in terms of expla-
nation and simulation, induction and deduction, emphasizing the need to
contain both within any complete cycle. We will show how the concept of
systems hierarchy, which is so central to fractals, might be exploited
through the modeling process, and we will then illustrate how this process
can be completed for the fractal simulation of urban structure using the
example of residential-housing location in London. The inductive approach
we will adopt is based on discrete choice theory, the estimation of a stan-
dard multinomial logit model (Hensher and Johnson, 1981) to housing cho-
ice, and measurement of its performance using McFadden’s (1979) pre-
dicted success statistics. We will show how the model is fitted to data which
relate choice of house type and location in London to key variables of urban
structure based on age and distance. Several models are fitted, some are
reestimated and computer maps are used to aid the interpretation process.
We are then in a position to begin the fractal simulation of urban structure
on the basis of the fitted discrete choice models. The simulations are essen-
tially visual, the data themselves being displayed on the screen and being
replaced by predictions of housing types as the simulation proceeds. Two
types of simulation are attempted — random and deterministic, and it is
shown how it is necessary to develop deterministic procedures to enable
the discrete choice models to generate realistic patterns. There are many
conclusions to this chapter, and work on both fractal images (Pentland,
1984) and spatial discrete choice models (Lerman, 1985) represent major
directions for further research.
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4.2 Exploring Urban Forms in the Space
of All Cities

The advantage of any computer model of a city is that its parameters can
be varied with a view to exploring the effect of such changes on the
resulting spatial form. Through visualizing the form using computer graph-
ics, the strength of various relationships which compose urban structure
can be assessed, both to improve such models in the laboratory as well as
to refine relationships in terms of generating the best fit with reality. In our
‘London’” model of the last chapter, we could control the distribution and
amount of the three land uses generated, by varying their parameters a*,
b* and R*. We can also vary the degree of midpoint displacement which is
related to the fractal dimension. In fact in this example, if we were to col-
lapse the random allocation of land use to a deterministic one, and use
non-random midpoint displacement, we would generate a city in which
commercial-industrial land use would entirely dominate the inner suburbs
and CBD, and residential the outer suburbs and the periphery, providing
a clear example of the von Thunen rings. This is implied in the land use
profiles shown in Figure 3.13.

What we will do first is extend our model to encompass other effects.
We will increase our land uses by disaggregating the residential sector into
three types — high, medium and low density housing, and split the commer-
cial-industrial use into their two separate components. We argued earlier
that at different hierarchical levels, various activities might dominate. For
example, if we were simulating the growth of an industrial city, then
decisions about location depend on the characteristics of a neighborhood.
Industrial neighborhoods tend to attract like industries, while residential
activity tends to avoid location there, and so on. We will extend our model
by allocating land use at each hierarchical level, and using the land use
allocation at that level to determine land use allocation at the next. The
way this mechanism might work is for a neighborhood to be classed in
terms of its dominant land use at the first spatial level of the simulation
and then for this dominance to be reflected at the next level of detail down.
This involves modification of the probabilities of allocation at that level,
these being conditional on the probabilities of land use at the next.

The way we simulate this effect is by modifying equation (3.29) in the
following manner:

pi(r)=a*+b"(r,-R"), u=12..,6, 4.1)

where a*, b and R* are parameters as before but the distance 7, now reflects
the fact that equation (4.1) is applied at each level s of hierarchical simul-
ation. Land use is not actually allocated at level s by the model but at the
next level down, p*(r,) is used to condition a new probability P“(r,,,) using
the following equation:

Pu(rs+1) 25 [1 + Pu(rs)]Y(u) Pu(rsu)- (42)

P“(r,,) is the probability used to effect the allocation. In fact the allocation
only takes place at the most detailed level of resolution and this probability
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is in fact that passed down from the previous level which acts on the basic
probability given by equation (4.1). y(u) is a parameter greater than 0 which
measures the importance of the effects at previous levels. If y(u) is equal
to 0, then there is no effect from previous levels and P¥(rs,;) = p*(7s.1). The
strength of the influence increases as (i) increases in value and in the
simulations to be shown next we have set y(u) at five values, namely y(u)
=0, 1, 5, 25 and 50. Of course equation (4.2) has to be appropriately nor-
malized. We have not made y(u), a*, b* or R* specific to each level because
the number of possible combinations of values becomes too large to handle,
and in the interest of developing parsimonious but general models, we have
begun our experiments with as small a number of parameters as possible.

We will now explore some 20 possible urban forms and the tree of possi-
bilities defining the “space of all cities” within which different forms exist
is shown in Figure 4.1. First we can allocate our land use randomly as in
the last section or in deterministic fashion based on the dominant land use
predictor at each level and in terms of each basic location. This gives us
two choices. As our fractal simulations are based on midpoint displacement
of the pure Brownian type with a Hurst exponent H = 1/2, then we can
either use that level of random displacement of the midpoint or no ran-
domness whatsoever; this also gives us two options. Finally we can use the
five values of (1) and this gives us five possibilities when we keep each
value of y(u) the same for each land use u across all hierarchical levels. In
total therefore, we have 20 options to simulate. This modified fractal model
was simulated on a Sun workstation, and some of its outputs are illustrated
in Plate 4.1 (see color section) where the simulations are shown at levels

Fractal

Land Use Hierarchical
Allocation ofGE:rT:g:e Conditioning
=0
No spatial 1
perturbation 5
o (©=1) % 25
Deterministic 50
land use
allocation 0
Spatial 1
perturbation 5
(D= 15) 25
50.
0
No spatial é g 1
perturbation 5
(D=1) 25
Random 50
land use
allocation 0
Spatial 1
perturbation 5
(D = 15) 25
50

Figure 4.1. The combinatorial map of the space of all cities.
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s =2, 4 and 6, thus illustrating once again the extent to which the patterns
become more realistic as the scale gets more detailed.

In Plate 4.1, we present six from the 20 simulations to give some flavor
of the differences. The deterministic model based on no fractal perturbation,
deterministic allocation of land use, and no hierarchical conditioning where
Y¥(u) = 0, Vu produces classic von Thunen rings, and as such, represents the
theoretical baseline for all our simulations. The CBD and inner areas are
dominated by commercial use, while there are three other rings of high,
medium and low density housing. Open space and industrial uses do not
dominate anywhere, and because any area of the city contains its most
dominant land use, these two uses never have a chance of being located.
The other feature worth noting is that because there is no fractal pertur-
bation, then the final units for location are identical and perfectly formed
triangles. This simulation is illustrated in Plate 4.1(a), and it is just possible
to make out the perfect symmetry of the triangles formed by midpoint dis-
placement with no randomness. If we introduce fractal rendering for the
same set of parameters, then the von Thunen rings simply appear some-
what cracked due to the fact that the sites are no longer identical in terms
of shape and location, although the outputs are still highly reminiscent of
von Thunen’s theoretical model; this is shown in Plate 4.1(b).

In Plate 4.1(c), we show what happens when heavy hierarchical con-
ditioning is introduced to the model which has fractal rendering but deter-
ministic land use allocation. The heavy conditioning is enabled with (1)
= 25 for all six land uses, and the effect is to produce a very strange pattern
in which residential land uses dominate everywhere. This is clearly
unusual, quite extreme and unlikely to be observed anywhere. Next we
show in Plate 4.1(d), the simulation based on no fractal perturbation, hence
perfect triangles as sites, randomness in land use allocation, and extreme
hierarchical conditioning. Again this produces a slightly more realistic pat-
tern, but one which is sufficiently different from reality to be somewhat
unlikely. Note the way the perfect triangles appear at any level here due
to the fact that y(u) = 50 for all land uses. Reducing the hierarchical factor
v¥(u) to 5 produces more realism as in Plate 4.1(e), while finally in Plate
4.1(f), we show the most realistic simulation we have achieved, based on
fractal perturbation, randomness in land use allocation and very slight
hierarchical conditioning [y(u) = 1, Vu]. This case is interesting in that the
simulation at level s = 4 is more realistic than s = 6 which is, once again,
reminiscent of pointillist painting.

The examples we have shown provide a good cross-section of the poss-
ible patterns which compose the experiments in our laboratory: we have
four examples of hierarchical conditioning and the four possibilities in
terms of land use allocation and spatial perturbation. What is quite clear
here is that the hierarchical conditioning is far too extreme once it rises
much above (1) = 1. Moreover, it is the randomness in land use allocation
which seems to provide more of the realism in contrast to fractal pertur-
bation although the fractal perturbation does indicate that the problem of
creasing becomes considerably more apparent as hierarchical conditioning
is increased. In fact, it is clear that although our model is more realistic
than the one we developed in the last section for ‘London’, it is still fairly
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unrealistic in its incorporation of hierarchy and of fractal perturbation
where the choice is either H = 1/2 or non-random midpoint displacement.

Our last foray into this type of fractal modeling partly resolves the prob-
lems of the models just outlined in two important ways. We will now intro-
duce control over the fractal dimension in quite explicit terms and we will
reduce the range of hierarchical conditioning to screen out the extreme
effects such as those shown in Plate 4.1(c) and (d). Thus, the most extreme
conditioning in the new model is where y(u) is equivalent to 5 (but on a
new scale where this value is given as 25). Another innovation which we
find useful is based on replacing the triangular lattice with a square grid.
In Figure 4.2, we show this grid and how successive random midpoint
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Figure 4.2. Simulating patterns using midpoint displacement of a square
grid.
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displacement enables a surface to be produced which appears to have less
creasing than the triangular. Moreover, as the grid is based on the unit
square, there is no measure of distortion present in the first place and thus
this would appear a less arbitrary and less biased form of initiator. We
have also increased the land uses in the residential sector to be defined
over a continuum of population densities, and this makes the simulations
more realistic in that densities are determined as a combination of random
allocation and distance from the CBD. In effect, this does not add to the
number of land uses per se, as the simulation is structured to determine the
density of the residential use at the stage when this use is allocated.

We show typical simulations from this model in Plate 4.2(a) and (b). In
(a), a fractal dimension of 1.26 has been used, hierarchical conditioning is
heavy with a value of 5, and randomness in land use allocation has been
used. In fact, this simulation is more realistic than any of those shown in
Plate 4.1 and it would appear that our new model provides an ideal basis
for computer experimentation. We cannot show all the possibilities here,
but in Plate 4.2(b), we show the von Thunen rings case where the fractal
dimension is unity (no spatial perturbation), there is no hierarchical con-
ditioning and land use allocation is deterministic. In these examples we
have also separated out the residential from other land uses, thus showing
how the different patterns stand by themselves. In this way, it would
appear that both the residential and commercial land uses, which make up
most of the city, have distinctive location patterns which are close to those
we might observe in existing cities.

There are many more variants we can generate using this model. Clearly
we can let the fractal dimension range from 1 to 2, we can explore a range
of hierarchical conditioning from y = 0 to 'y = 5, and we can make this
parameter specific to each level s and/or each land use u. We can even let
these parameters take on values outside the range of 0 to 5. But the models
developed here simulate only one type of city, the monocentric, and thus
it is important to simulate forms other than those which are unipolar and
concentric. This would involve introducing mechanisms which measure the
accessibility of any point in the city to any other and it would take us
towards the mainstream of urban modeling which is based on spatial inter-
action (Batty, 1976). In fact throughout this book, we will steer well clear
of these types of models because these are for a very different purpose.
Although we continually allude to fitting fractal models to real situations,
in the last analysis, our exposition of fractal cities is motivated by our search
for the applicability of these ideas, and the insights they might give to the
broad domain of urban studies. Indeed from Chapter 7 onwards, we will
begin to demonstrate how fractal models give us a very different perspec-
tive on studies of urban density, which suggest that much previous research
should be reworked. The value, then, of these forays into hypothetical
urban form is in the applicability of the fractal idea and the somewhat more
superficial idea of visualizing computer models using fractal rendering. We
will now turn to more realistic examples, developing a conventional urban
model of housing in London and then showing how its predictions can be
best evaluated in terms of the spatial forms that they imply.
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4.3 Hierarchical Urban Structure

So far the hierarchical structures we have introduced do not relate to any
observable characteristics of city systems except in the most superficial way.
Clearly for levels s < 4 in Plate 4.1, the images generated show the strong
influence of the triangular patches making up the hierarchy and are thus
not realistic. When levels with s = 4 are reached, the images no longer
display the influence of the triangular method in that the concatenation of
triangles at these levels produces the sorts of irregularity characteristic of
land use patterns. Thus in one sense, the triangular subdivision process is
scale-dependent. However, in fractal simulation, there is still the need to
relate the method of construction to substantive characteristics of the sys-
tem as in other forms of modeling. Indeed, many examples of fractals can
only be modelled coherently by defining their intrinsic properties of self-
similarity: trees, for example, are self-similar through their mode of repro-
duction and growth. In geomorphology, the process of weathering and ero-
sion acts in a self-similar fashion. This is clearly true for cities as well and
thus hierarchical structure must reflect this.

We can sketch an idealized process of fractal simulation to which we
might aspire. We begin by identifying hierarchy in the system of interest
based on our perception of self-similarity in description, and we are then
able to measure whether or not the phenomenon is fractal and whether or
not the fractal dimension is invariant to changes in scale. Each stage of
measurement and description leads to further development of the underly-
ing process through which the structure can be generated, and this in turn
leads to models which are consistent with fractal structure. Once appropri-
ate models, applicable to different levels of the spatial hierarchy, have been
developed, other fractal structures utilizing such hierarchy and incorporat-
ing the application of the underlying process through recursion, can be
simulated.

This approach is in fact the classic process of observing a phenomenon,
deciding whether or not it meets any theoretical preconceptions we have,
developing a ‘best” model structure, and then using this to enable new and
different predictions to be made. Essentially this is the process of induction
followed by deduction, or in a different sense, analysis followed by syn-
thesis. We can think of induction as a process of building theory from the
bottom up, from specifics to universals, while deduction is a top-down pro-
cess in which universals are used to predict specifics. The best expression of
this complete process is in the fields of design and problem-solving where
problems must be understood (through induction and analysis) prior to
their solution (through deduction and synthesis). In fact in design, methods
for analysis and synthesis exist which are based on searching for hier-
archical structure: problems are decomposed in the quest to induce their
structure and thence composed in the quest to synthesize a solution from
the elements (Alexander, 1964; Johnson, 1984). There are parallels with the
process used here to enable appropriate description and explanation prior
to fractal simulation.

A simple example which relates to spatial theory is the rank-size distri-
bution of cities. City size distributions display regular properties which are
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consistent with subdivision of a national or regional space into market areas
whose decreasing size reflects the frequency of spatial dependence and the
rarity value of spatial goods. Idealized size distributions can be developed
by taking a primate city and its national market area, generating two next
order cities, then four, and eight, and so on, in the manner we illustrated
in Chapter 1 in equations (1.1) to (1.4). This is the type of method used in
Central Place Theory, and another interpretation using fractal geometry has
been developed by Wong and Fotheringham (1990). In terms of our com-
plete cycle of model-building, we first need to identify the hierarchy of
market area, transport routes, population centers etc., thus explaining spa-
tial structure at different levels. This is accomplished inductively in bottom-
up fashion, possibly using clustering type methods. The simulation then
begins from the top-most level in the hierarchy by subdivision and fractal
rendering, generating centers and activities at different scales in such a way
that lower levels depend on upper. Although there is a sense in which the
simultaneity of dependence is treated by correct bottom-up followed by
top-down analysis, in terms of fractal simulation which is arbitrarily struc-
tured in hierarchial terms, the dependence is only one way. In fact, this is
a problem with many hierarchical descriptions for it is clear that any
activity at any position in the hierarchy owes its stability to those activities
both above and below. This is the concept of ‘niche” and it is something
which must be explored in considerable depth in further research on frac-
tal simulation.

In spatial modeling, there are some very well-developed techniques to
effect this process of hierarchical explanation and simulation. The logical
output of a process of continual subdivision is the elemental space which
contains the individual, and thus individual behavior lies at the base of the
spatial hierarchy. Such models have been widely developed during the last
decade to address problems of discrete choice in the economic domain
using standard methods of econometric estimation (Lerman, 1985). These
are the models which will be used here, and a particularly attractive feature
of them is the fact that they can easily and logically incorporate hierarchical
structure: these are the so-called sequential or nested logit models (Hensher
and Johnson, 1981).

As yet, very few applications exist of truly spatial discrete choice models,
and even fewer have been developed in a spatially-nested form. Neverthe-
less, these models appear promising as the basis of the recursive generation
of activity through the spatial hierarchy. The other class of models which
will be considered at a later stage of this research, and which are related
to discrete choice models, are spatial interaction-entropy models. It is well-
known that such models have highly articulate properties of spatial
decomposition (Roy, 1983) and this also makes them attractive to hier-
archical simulation. There are a variety of methods for enabling hierarchy
to be defined and built into spatial models, such as the standard multivari-
ate cluster-type techniques as well as methods based on more subjective
comparisons such as Saaty’s (1980) analytic hierarchy process; these could
also prove useful to further research.

In the sequel, we will not attempt to address the full process of hier-
archical description through the identification and use of hierarchical mod-
els but we will follow the broad sequence of inductive, then deductive
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stages in the modeling process. We will begin by selecting models for indi-
vidual choice of housing type and location in Greater London which is the
urban region we intend to simulate. This first involves a traditional process
of formulating, estimating and selecting appropriate discrete choice models.
Having accomplished this, we will move onto the simulation in which these
discrete choice models are used to predict housing choice at the lowest
level of fractal detail generated. In this way, an image of the residential
urban structure of Greater London is built up. Hierarchy is still a largely
arbitrary affair in these applications, although we will address it in future
research. But there are other problems relating to modeling and simulation
which emerge and must be dealt with, specifically related to spatial vari-
ation. In any case, the logical next step in this work is to develop a ‘realistic’
version of our hypothetical simulation presented earlier. To this end, we
will now sketch the inductive side of this effort, beginning with the theory
of discrete choice and its application to residential housing location in
Greater London.

4.4 Discrete Choice Models of Urban Structure

To set the context, we must review some fairly standard results but in doing
so, we will adapt discrete choice models to our application and thus only
select those aspects which are of relevance here. We will first state the
multinomial logit model (MNL) in which we can identify the choice by
individual i,i=1, 2, ..., N, of alternative k, from the set of alternatives k =
1, 2, ..., K, where there are clearly N individuals in the system making
choices from K alternatives. This set of K is referred to as the choice set
and in our applications involves types of housing. The MNL model predicts
a probability Py which is the probability of individual i choosing house
type k where there are K = 4 house types to choose from, and where i
implicitly represents the location of the individual in the city. Thus the
model is designed to explain choice in terms of location.

First we must associate a utility of choosing alternative k with the individ-
ual 7. This utility Uy is usually specified as a linear sum of exogenous
(input) variables which may be specific to the choice in question or non-
specific (generic). In our context, the parameters of these variables are made
specific, being referred to as alternative specific constants, but the variables
apply to each house type. Then

Ui =D, Bim Xim + € m=1,2, ..., M,

where the first term on the right-hand side of the equation contains strict
utility components made up of parameters By,, and independent variables
X;ms and the error term e, reflects differences in tastes, unobservable influ-
ences and such like. The MNL model is derived by assuming that the error
components {e;,} are identically and independently distributed, and by
maximizing utility using the traditional economic logic (Hensher and John-
son, 1981; Ben Akiva and Lerman, 1985). This random utility derivation of
the MNL model is subject to the normalization
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EP %=1,
k
and the model is derived as

exp {2 B xim}
Pk = = ‘ )
Z exp (U} 2 exp {2 Bum Xim}

These sorts of models have been widely applied in transport research, but
have also been adapted to a variety of spatial contexts (see Wrigley, 1985).
We will not dwell on this, but suffice it to say that equation (4.3) is a particu-
larly flexible and adaptable model structure.

For purposes of estimation and prediction we need to express equation
(4.3) somewhat differently. First we must choose one alternative, say k, as
the base or numeraire, and express equation (4.3) as

1

1+ z exp {2 (Bum - Bkm) xim]

u*k

exp {Uy)

(4.3)

Py= 4.4)

We form the ratio of any two probabilities for different choice alternatives
1 and k using equation (4.3), and this gives

exp {2 Bum xim}

Piu m

P—‘k = =exp [2 (Bum - Bkm) xim}~ (45)
exp {2 Bkm xim} "

We can now express P;, in terms of the numeraire P; using equations (4.4)
and (4.5) which simplify to

P, =Py exp {E (Bum — Brm) xim}

exp {Z (Bum - Bkm) xim}

1+ E exp {E (Bum - Bkm) xim}

uzk

(4.6)

When k = u, equation (4.6) collapses to equation (4.4). In the sequel, equation
(4.5) is used in estimation while model predictions are made using equ-
ation (4.6).

4.5 Estimation Methods for the
Multinomial Logit Model

The logarithm of equation (4.5) is referred to as the log-odds of alternative
u versus k, and this is the actual equation which is used in estimation. Then
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Piu
k%§;=2(mm—m»mm=2xmxw 4.7)

There is a clear interpretation of the parameters in equation (4.7). If \,,,, is
positive, this implies that the choice of alternative u is more important with
respect to the variable x;, in question than the choice of alternative k. The
reverse is true if \,,, is negative, while there is no difference in importance
between choices if \,,, = 0.

The model parameters in equation (4.7) are usually estimated using
weighted least squares or maximum-likelihood, and here we prefer to use
the latter because of the availability of Hensher’s BLOGIT computer pack-
age (Hensher and Johnson, 1981). To assess goodness of fit we also require
the data set of actual choices made which is given as F; where F; =1 if i
actually chose k, while F; = 0 if this choice was not made. We calibrate the
model by maximizing the log-likelihood which is given as

AB) =2, >, Filog Py, 4.8)
i k

and we can also assess the fit as a variation of this likelihood function. A
null hypothesis can be set up in which B,,,, = 0, V u,m implying no variation
across individuals, that is, Py = P, Vi. This can be used to compute the
null-likelihood from equation (4.8) which is given as

A(0) = >, >, Fylog Py = >, Nilog Py, (4.9)
i k k

where Ny is the actual number of choices of k made by all individuals i. A

measure of fit, in some ways similar to the correlation coefficient, is defined

as £. This statistic is defined as

A@)
A0 (4.10)

which varies between 0 and 1. The statistic can also be modified to reflect
degrees of freedom, while typically good value of &€ range between 0.2 and
0.4. In fact Hensher and Johnson (1981) argue that any model with £ > 0.2
is likely to be acceptable. Other measures of fit and diagnostics for log-
linear model equations are discussed in Wrigley and Longley (1984), Wrig-
ley (1985), and Ben Akiva and Lerman (1985).

There is a major difficulty in generating less global goodness of fit meas-
ures for discrete choice models. Because the observed data represents dis-
crete choices {Fy, F; =0 or 1} while the predictions are given as probabilities
{Py, 0 = Py = 1}, comparisons at the individual level are meaningless. Thus
some aggregation is always necessary. One scheme suggested by McFadden
(1979) involves computing expected choices, that is, the numbers of individ-
uals who originally chose alternative k and are expected to choose alterna-
tive u. In fact, in later simulations we will examine individual predictions,
but for the applications to London which follow, comparisons between
observations and predictions will be confined to success statistics based on
expected choices.

To introduce these statistics, first note the structure of the observed choice
set {Fy}. Then by definition,

£=1-
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ZPik=1/EFik=Nk/
k i

> 2 Fx=2 Ni=N. (4.11)

The first equation in (4.11) implies that any individual can only make one
choice, the second is the constraint on the number of choices made for each
alternative, while the third simply says that all the number of choices made
is the same as the number of individuals N. The analogous structure for
the probability set {Py]} is

Zpik=1fzpik=Nk/
k i

> 2 Pi=2 N,=N. (4.12)
i k k

Similar interpretations for equations (4.12) exist as for those in (4.11), but
note that summation of {P;} with respect to individuals yields predicted
numbers of choices N, in contrast to actual numbers Nj.

For each individual choice F; (where F; = 1) there is a probability that
the same individual will make a different choice P;,. The number of such
choices across all individuals is the number of individuals who originally
chose k and are expected to choose u, and this is defined as

N =, FyPi. (4.13)

1

{Ny,} is the so-called predicted success matrix. Using equations (4.11) to
(4.13), the matrix has the following properties:

Z Ny, = z Fi 2, Pu =Ny (4.14)
and
Z Ny, = 2 (E ka) Py, =N.,. (4.15)
k k

From these definitions it is clear that
> > Nuw=2 Ne=>, N,=N.
k u k u

We can devise a variety of statistics relating to proportions and differences
between observed and predicted successes using these aggregations. First
we can compute the proportion of correct predictions, noting that Ny, gives
the number of such correct predictions. Then

MNi = Nkk/Nkl (4.16)

which varies between 0 and 1. Total predictive success occurs when Ny, =
N, Vk and Ny, = 0, k # u. For the entire system the equivalent statistic to
equation (4.16) is defined as

n= 2 Nkk/N- (417)
k
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The second index relates to differences between predicted and observed
numbers of choices, expressed as proportions or shares. An absolute meas-
ure of this index is given by Nj — N, while its relative form is defined as

&= (N, — N))/N, (4.18)

which can be positive or negative.

The final index we have computed is called by McFadden (1979) the pre-
diction-success index ¢;. One problem is that if the predicted choices for u
were much larger than k, that is if N, > N,, then the value N, would be
affected accordingly. To account for this, ¢ is defined as

Nkk Nk
P = Nk Nr

and an overall index ¢, appropriately weighted, is defined as

¢= E N = > {%— (%) } (4.19)

The maximum value of ¢ occurs when %, Ny = N, and then

Pmax=1— >, (%)2 (4.20)

A normalized measure is given by ¢/@ma other applications are given in
Wrigley (1985). These indices based on equations (4.13) to (4.20) will be
further adapted in the empirical work which follows to aggregations of
subsets of individuals located in specific zones; these will be presented
below.

4.6 Determinants of Spatial Structure: the Data Base

Conventional descriptions of urban structure tend to be based on disaggre-
gations of urban activities into land use by type and location. One realiz-
ation of conventional structure was used in the hypothetical ‘London” dem-
onstration model presented in the last chapter and its extensions presented
earlier in this. In those models, commercial-industrial (work), residential
(living) and open space (leisure) activities were treated in a locational
framework which emphasized in diverse ways the radial and concentric
nature of the contemporary city. It is not possible to take this model further
to the applications stage here, largely because we do not have easy access
to a comprehensive land use-activity data base. Moreover, we are inter-
ested in developing more formally structured discrete choice models which
can be embedded within the fractal simulation, thus enabling us to assess
the impact of individual spatial choice behavior in the large.

Another consideration which has guided us is not just the absence but
the availability of data. We have access to a large-scale housing survey —
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the English House Condition Survey (EHCS: DoE, 1978, 1979) — which was
conducted in 1976. This was based on a fairly low sample of households
in England, something in the order of 1 in 3000, but this represents an easily
available, highly disaggregate data source and thus we have chosen to
make use of it. Logit models of housing tenure choice have previously been
calibrated using this data set (Longley, 1984).

We have chosen housing type as the key variable defining urban struc-
ture which is a major category in the EHCS data. Houses are classified into
five types: purpose-built flats (apartments), converted flats, terraced (row)
houses, detached/semi-detached (single-family) houses, and a miscel-
laneous group. House type is a particularly clear way of representing urban
structure for different areas of the city are often perceived generally in
terms of house type: historically, cities have grown reflecting different
house types, and house type seems to relate to how far people wish to live
from the CBD. Cities are often articulated as spatial patterns with flats near
the center, terraced houses occupying the inner suburbs, detached/semi-
detached the outer suburbs, each ring reflecting a stage in city growth. Thus
density and distance variables are indirectly reflected in house type, and
in the case of London, this is particularly relevant in that the city is strongly
monocentric, has a well-developed flats market and has been economically
buoyant for several centuries. In our applications, we have in fact excluded
the miscellaneous category because of the fact that it acts as a residual cate-
gory and contains less than 2% of the observations available in the data
base.

Choice of house type lies at the base of several contemporary theories of
urban structure which integrate two important constructs. First, bid-rent
theory postulates an implicit trade-off in housing decisions between hous-
ing space and type versus proximity to, or distance from, central urban
functions; and urban growth and dynamics (as manifest by filtering, sub-
urbanization, urban renewal etc., and as expressed in the age of the stock)
exhibit an identifiable correspondence with distinctive dwelling types such
as subdivided central city houses, suburban semi-detached homes, pur-
pose-built flats in revitalized inner city neighborhoods and so on. The impli-
cation is that dwelling and neighborhood type are clearly related to distance
from the CBD and the date at which the land parcel was integrated (or
reintegrated) into the contemporary urban development process.

Thus age and distance represent key determinants of urban structure. In
designing the models, it was thought important to keep these variables as
simple as possible and at the same time, easily measurable. We also con-
sidered neighborhood quality at an early stage, but eventually dropped this
to keep the model simple; in any case, neighborhood quality was subjec-
tively specified in the EHCS data and thus difficult to predict generally.
Age of house in which the household respondent resided was available in
the survey, but distance from the CBD was not, and this constitutes a prob-
lem. Each individual was not coded by exact location in the data set, but
located by Borough, of which there are 33 in Greater London. What we
have done in measuring distance is to simply locate a centroid in each
Borough and use airline distance from this to a point in the City.

Another consideration involved the fact that when we embed the discrete
choice models into the large-scale (fractal) simulation, we require data on
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age of housing and distance from the CBD at every conceivable point of
residential development in Greater London. These data are amongst the
easiest to obtain from independent sources. We used an age distribution
for housing measured over seven levels which was available from the (then)
Greater London Council (GLC) Intelligence Unit Library. Distance is
measurable directly from the map, while neighborhood quality, although
available from the GLC, did not appear to match that used in the EHCS,
and was thus excluded at an early stage of model estimation.

The general form of the models we have estimated, in log-odds form, is

log %’f =N+ MR, +M2Qp i€ Z,u=23,4. (4.21)
il

The log-odds equation is normalized with respect to the probability of
choosing a purpose-built flat, P;; and the other choices involved converted
flats (u = 2), terraced houses (1 = 3) and detached /semi-detached homes (u
= 4). Q; is the age of the dwelling in which individual i resided and R, is
the distance from the CBD to the centroid of the Borough in which i resides.

In essence, we assume that R; is unobserved and that equation (4.21)
is an appropriate approximation to the underlying discrete choice model
analogous to equation (4.21) in which R; replaces R,. Equation (4.21) will
only be acceptable if R, is the mean distance, and the sum of the differences
around R, in the Borough cancel. Formally, if R; = R, + €; where ¢; is the
‘error’ difference between the mean and the actual distance to individual
i, the average R, can be defined in terms of R; as

> R/N,=R,+ > €&/N,. (4.22)

ieZ, ieZ,

Z, is the spatial definition of the Borough # and N,, is the number of individ-
uals in Z,. From equation (4.22), the mean will only be equal to R, if 3.~
¢; = 0, that is the errors around the mean are self-canceling in total. We
cannot explore the detailed implications of this aggregation further, but it
is important to further research. Discrete choice theory is strangely deficient
in clear discussion of the spatial aggregation problem, with the exception
of important work by Anas (1981, 1982, 1983).

Before we broach questions of model selection and estimation, we will
sketch how the model we are working with could be developed in nested
fashion, to account not only for the aggregate form of the distance data,
but also for more substantive questions related to the sequence of spatial
decision-making. Because distance from CBD is only available at Borough
level, it might make sense to conceive the house type-residential location
process as one in which a choice of neighborhood type is made first on the
Borough (Z,) level in terms of neighborhood quality and distance from the
CBD and then the choice of house type made at the individual location
with respect to age. Such a model could be written as

P igk = P iq P, ik|gr
where P, is the probability of an individual i choosing neighborhood type
g and house type k, P, the probability that the individual chooses neighbor-
hood type ¢ at Borough level and Py, the probability the same individual
then chooses house type k, having chosen neighborhood type 4. Such a
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sequence could be structured so that the fractal simulation enabled neighb-
orhood type to be chosen at an appropriate level of fractal resolution,
house-type at a lower level. Although neighborhood type is predicted here,
this could be suppressed if it were regarded as only an intermediate vari-
able of little visual significance. There are many issues to resolve here, but
some work along these lines in an industrial location context by Hayashi
and Isobe (1985) looks promising, as does the theoretical work of Roy
(1983). Nested models of this type need to be pursued in extensions to
these applications.

4.7 Model Selection and

We developed a number of preliminary specifications of the model before
we decided upon equation (4.21). We first estimated some models based
on housing tenure but then dropped these in favor of house type when
our ideas relating to urban structure became clearer. We began with five
categories of house type including miscellaneous but dropped this when it
appeared non-significant in explanation. We then estimated the house type
model with all combinations of up to three exogenous variables: age and
distance which we eventually selected, but also neighborhood quality. With
three variables, there are seven models in all which can be specified and
the global fit of each of these seven is given in Table 4.1.

By far the best of the models, indicated in bold type in Table 4.1, are the
two which include the age and distance variables. These models in fact are
the only ones which reach the threshold of acceptability in which £ > 0.2
suggested by Hensher and Johnson (1981). The best model also includes
neighborhood quality but the percentage increase in fit between the model
without this variable and that with is less than 5% and thus neighborhood
quality has been omitted. Other reasons relate to the fact that neighborhood
quality is difficult to produce in a consistent and comprehensive data base
for London, and to the fact that in our fractal simulations we have severe
memory limitations, which means we need to hold both input and output

Table 4.1. Global fits of models incorporating age, distance and neighbor-

hood quality

Independent variables £
Age 0.118
Distance 0.089
Neighborhood quality 0.069
Age and distance 0.207
Age and neighborhood quality 0.123
Distance and neighborhood quality 0.095
Age, distance and neighborhood quality 0.218

Bold type indicates acceptable models within the Hensher-Johnson Limit £ > 0.2.

Estimation
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data in screen memory simultaneously. This limits the number of variables
we can deal with and thus neighborhood quality was felt to be dispensable.

We will now examine the discrete choice model estimated for the age—
distance variables in equation (4.21). The three fitted equations are given
as follows, with the notation: purpose-built flats: u = 1, converted flats: u
= 2, terraced houses: # = 3 and detached/semi-detached houses: u = 4.

P, -4862 + 0034R, + 0067Q,

g _ 4.23
%8P, (-7.984¢ (0754  {10.599}* (4.232)
(0.609) (0.045) (0.006)
P, -3.605 + 0.177R, + 0.052Q,
og 2= Q (4.23b)
Py {-9.818)* {6.735}* {11.439)*
(0.367) (0.026) (0.005)
. 5737 + 0.354R, + 0.046Q,
log—P—V%z Q (423C)
Py {-12.143} {11.379}* {9.102}*
(0.472) (0.031) (0.005)

where £ =0.207 and N = 809. ¢ statistics are shown in curly brackets, signifi-
cance being denoted by an asterisk; standard errors are shown in parenth-
eses.

Note that the log-odds is essentially the log-likelihood that individual i
will select the numerator alternative rather than the denominator alterna-
tive. In view of the aggregated nature of the distance data, the & of 0.207
indicates a reasonable degree of overall fit, whilst the variable parameters
and their corresponding ¢ statistics lend support to our a priori expectations.
Equations (4.23b) and (4.23c) imply that both terraced and detached/semi-
detached are likely to be further from the CBD and to be older than pur-
pose-built flats; and equation (4.23a) suggests that converted flats are likely
to be older than their purpose-built counterparts.

These interpretations can only be borne out by a full-scale simulation and
the pattern of coefficients suggests that flats of both kinds are nearest to
the CBD, while terraced, then detached/semi-detached houses are further
away, assuming that terraced are older than detached/semi-detached. As
we intend the simulation to be entirely spatial, and spatial structure is not
apparent from the model fits presented so far, we need to see how well
the models perform spatially at an aggregate level first. The obvious level
on which to perform such spatial analysis is similarly aggregate. We will
present our analysis visually in the next section where the models” predic-
tive success indices are mapped for the 33 Boroughs.

We have already shown that it is necessary to aggregate individual pre-
dicted probabilities so that we can enable some comparison with the
observed data. To this end, we introduced McFadden’s (1979) predicted
success matrix in equations (4.11) to (4.15), and then presented various indi-
ces of success in which correct proportions, and differences between
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observed and predicted choices were computed in equations (4.16) to (4.20).
However, it is possible to compute equation (4.13), the numbers of persons
originally choosing k and predicted to choose u, for subsets of individuals,
in particular individuals residing in certain zones, in this case Boroughs Z,,.
In all the indices which follow equation (4.13), Ny, is replaced with

Nkun &= 2 Fik Piui (4:.24)

ieZ,

where N, is the number of individuals originally choosing k and predicted
to choose u in Borough Z,.

The proportion of correct predictions defined in equations (4.16) and
(4.17) for the whole of Greater London can act as a basis for comparison
with their zonal equivalents. These statistics were computed using the
model in equation (4.23) as

1, = 0.533, 1, = 0.198, v, = 0.433, and v, = 0.397.

These indices seem rather low; only in the case of purpose-built flats is there
a better than 50% success rate, and converted flats are poorly predicted. The
overall percentage of correct predictions from equation (4.17) is computed
as m = 0.432 which is an appropriate average of {n,}. The spatial (zonal Z,)
equivalents of v called y, are mapped across the 33 Boroughs in Figure
4.3 (note that in all these types of map, the City Borough does not contain
any observations and thus is not shaded). These percent-correct predictions
show a much wider range of variation. In general, purpose-built flats are
better predicted closer to the CBD, while the reverse holds for
detached /semi-detached houses. The distribution of converted flats gener-
ally shows a low percent prediction with a slight increase towards the CBD
while terraced houses show a less distinctive spatial pattern with a slight
increase in performance towards the periphery. In fact, Figure 4.3 contains
the clearest demonstration we have that individual choice behavior varies
spatially. The obvious conclusion is that there are two sets of models, one
for inner, the other for outer London, but before we consider these further,
we will examine other indices of predictive success.

Indices of the percentage difference between observed and predicted cho-
ices given by equation (4.18), {¢:} have been computed in spatial equivalent
form and are mapped in Figure 4.4. The patterns are much less clear than
those in Figure 4.3. For purpose-built flats, the largest differences are in the
inner suburbs, and the smallest in the center and the west. For converted
flats, the pattern is much more random with a slight bias towards higher
differences in the inner suburbs. For terraced houses, the inner suburbs
show higher levels of under- and over-prediction in the cases of
detached /semi-detached houses. These maps are more difficult to interpret
than their counterparts in Figure 4.3. What they do show, however, is that
there are both sectoral and concentric-geometric spatial biases in the pat-
tern of predictions which can only be accounted for by the addition of new
and different explanatory variables (and the possible deletion of one of the
existing ones), or the development of models which accept these spatial
differences. We will pursue the latter course.

To conclude, it is useful to examine the pattern of overall correct predic-
tions from equation (4.17), computed and mapped spatially, and this is
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Figure 4.3. Propor
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fions of correct choices of house fypes (cont.): (a)
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(d)

Figure 4.3. Proportions of correct choices of house types: (c) terraced
houses; (d) detached/semi-detached houses.
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(a)

Percent

Figure 4.4. Differences in observed and predicted housing choices
(cont.): (a) purpose-built flats; (b) converted flats.
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(c)

Figure 4.4. Differences in observed and predicted housing choices: (c)
terraced houses; (d) detached/semi-detached houses.
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presented in Figure 4.5. The best predictions are recorded in and near the
center, and in the outermost suburbs. This suggests the need for two separ-
ate models of individual choice behavior, one for inner, the other for outer
zones. The need for this distinction is even clearer when the normalized
success index computed from the spatial equivalents of equations (4.19)
and (4.20), and defined as ¢,/ @, max, is examined. This is mapped in Figure
4.6, and shows that the best predictions occur nearest the CBD, the worst
in the far western and eastern suburbs. On this basis we decided to reesti-
mate our models based on equation (4.21) for inner and outer London,
where inner London is based on the 13 Boroughs which compose the Inner
London Education Authority (ILEA).

The sample size of 809 observations was divided into 337 based on the
inner Boroughs, the remaining 472 comprising the outer Boroughs. First
equation (4.21) for the inner Boroughs was estimated as

. P, -5446 + 0.194R, + 0.061Q, @250)
og — = Zoa
& Py, {-5.849) {1.478) {8.305)*

(0.931) (0.131) (0.007)

Proportion

togram

Figure 4.5. Proportions of correct choices for all house types.
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Histogram

Figure 4.6. Overall normalized success indices for all house types.

P, -5106 + 0430R, + 0.050Q;,

log 5= = (4.25b)
Py {-7.046)* {4.106}* {8.722}*
(0.725) (0.105) (0.005)

p, -7430 + 0546R, + 0.050Q;
P. (-5810f  {3203)* {5767
(1.279) (0.171) (0.009)

where £ = 0.228 and Niqne: = 337;  statistics and standard errors denoted as
above; and the appropriate equation(s) for the outer Boroughs estimated as

log (4.25¢)

5119 + 0030R, + 0.075Q,
log 22 — Q (4.26a)

%8P, (-3307) (0280}  (6514)*
(1.548) 0106)  (0.012)

Py 1300~ O0R, + 0.0590,
og — =
8P, (-1754) (0170}  {7.450)*

(0.741) (~0.051) (0.008)

(4.26b)
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P, -3537 + 0.186R, + 0.051Q,
log—= (426C)
Py {-4.740} {3.816} {6.538)*

(0.746) (0.049) (0.008)

where £ = 0.106; Noyer = 472. What becomes apparent in terms of the t and
& statistics is that the inner London model (equations (4.25)) performs very
much as the original model (equations (4.23)), whilst the outer London
results are rather different. Equation (4.26) reflects a diminished role of the
distance variable (two of its associated ¢ statistics are insignificant and one
parameter exhibits an unexpected sign) which contributes towards a much
lower &* goodness-of-fit measure.

We might rationalize this in terms of our previous land use theory as
follows: whilst difficulties of physical accessibility constrained the physical
growth of London up until the First World War, the subsequent innovation
of mass transit and the automobile rapidly opened up large tracts of land
for development. Because most of this development occurred over very
large areas, the form of physical development is much less likely to exhibit
a very close and identifiable correspondence with distance from the CBD.
Reestimation of our model for outer London without the distance
variable yields

P, 4695 + 0.075Q, wor
oo =2 = 27a
8P, (7388  (6.490)

(0.635) (0.011)

P, -1399 + 0.059Q,

Py _ 427b
%8P, T (4900p  {7.470) (3.270]
0.280) (0.008)
P, 0881 + 0.048Q,
fog == 427
%8P, (33471 (6241 (4.27¢)
(0.263) (0.008)

£ =0.078 and N, . = 372; t statistics and standard errors denoted as above.
The & statistic is less than that for equations (4.26) and thus the model has
not been used in the simulations which follow. At this point we can con-
clude our section on estimation. Many avenues remain unexplored but sev-
eral models have been tested and we will take forward those in equations
(4.23), (4.25) and (4.26).
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4.8 Fractal Simulation of House Type and
Location in London

One of the more obscure reasons for developing such a simplified model
based on age and distance can now be made clear. Age is a spatially exten-
sive variable, while distance is a property of space itself. Thus it is possible
to display a single map shaded according to age from which distance can
also be read, in particular distance to some fixed point from any other. If
we had more than a single extensive variable, age and neighborhood qual-
ity say, these could not be represented on the same map in easily codable
form. Clearly it is useful for ease of interpretation to have a single map of
input data, for this can be directly associated with a map of the outputs
from the models. In fact, the need to store data in map form is essential,
for the fractal simulation was run on a very small microcomputer in which
only 8K of memory was available for program and data, 20K of memory
being given over to the graphics screen. Although it might be possible to
store data on disk, and thus include a larger number of independent spatial
variables, the continual reading and writing required would make the oper-
ation of the model prohibitively slow. In fact, because the data are spatially
extensive, it is essential to store them in screen mode, for the resolution we
are working with involves 160 x 256 pixel points which makes any form
other than screen storage extremely problematic. The data on age are stored
as a screen map, and airline distance is easy to compute from screen coordi-
nates which in turn are a function of the screen addressing.

The age data were made available by the GLC Intelligence Unit in seven
age groups which were coded in grid fashion, and colored in the screen
memory according to the age group. The screen map is shown in Plate 4.3
where the colors refer to the age of housing. The following average ages
in years define the seven ranges in question, —8 —26 —48 —78 —110 —150
—175 —, and these are colored white, light blue, magenta, dark blue, yel-
low, green and red respectively. These represent weighted averages which
reflect the distribution of housing in any grid square. Distance from the
CBD to Borough centroids is measured in kilometers, the GLC boundary
being about 24 km maximum from the City and the ILEA boundary used
for the inner London model being about 13 km distant. Note also that the
shape of urban development in London is coded into the data through grid
squares colored on a black background which does not contain housing.
These represent ‘vacant’ land in the sense used earlier, although in these
applications, the model in no way predicts this.

The way the simulation works involves first loading the age map into
the screen memory from file. Then the fractal simulation begins in the order
used previously in the demonstration model, and when the appropriate
level of fractal detail is reached, the program retrieves the color of the cen-
troid of the triangle space reached, from the screen, converts this into an
age value, computes distance and uses these variables in the model struc-
ture based on equation (4.21) to compute the probability of house type.
Thus the simulation works by replacing the regular gridded age map by
the irregular fractal land use pattern in a literal sense. This rather innovative
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technique for input is immediately converted to output and this occurs
directly ‘before your eyes’. In a sense, it is a version of the WYSIWYG
principle (‘What You See Is What You Get’) which is central to many oper-
ations with graphics computers. A note on technical detail is required. The
simulation operates on a display with resolution 160 x 256 pixels in 16 col-
ors. Eight colors are reserved for the age map (seven ages and one vacant
land use) and five are used in choosing house type (four types and one
vacant land use). The process of replacement is not as clear as it might be
because only eight absolute colors are available, hence the replacement of
the input map with the output map uses similar colors and is only
distinguished in terms of its irregularity.

The process of fractal simulation is essentially the same as that used pre-
viously in Chapter 3 in the ‘London’ sequence. Moreover, we have also
used the triangular midpoint displacement technique for fractal rendering
which was shown there in Figure 3.14 for the hypothetical demonstrations.
The only difference relates to the way the input data are stored and sampled
and the way the probability models are developed. Four land use types
based on housing, rather than three based on activities, now form the simu-
lated urban structure. The area over which the simulation is operated is
fixed and in a sense residential location is already predetermined through
the data, and thus it is only house type by location which varies.

We have already noted that two model structures are to be used: that
based on the whole of Greater London using equations (4.23) and that based
on the distinction between inner and outer London based on equations
(4.25) and (4.26). In these simulations, we work at recursive level s = 5 which
essentially fixes fractal detail at just above the pixel level of the screen. Each
simulation takes about three hours and involves examining 10 x 4° = 10,240
randomly positioned contiguous triangles which form the network of frac-
tal detail at the lowest level of resolution. In fact, the models are based on
809 data points, and in the area in question there are in excess of three
million households, thus the simulation itself is still very much in the nature
of a sample-style exercise in which an ‘average’ individual residing at the
lowest level of fractal detail makes a house-type choice which is then
assumed to be typical of all individuals at that level and in the space which
contains that location.

The other issue involves the conversion of probabilities {Py} into discrete
choices. In the demonstration model, a random simulation was adopted in
which choice of land use was accomplished according to the probability
range fixed by the land use models but ultimately determined using a ran-
dom number device. The resultant outputs were very satisfactory because
the probability profiles were quite distinct, thus enabling fairly clear
decisions to be made and characteristic spatial patterns to emerge. Here,
however, the probability profiles of the house type models are much less
different from one another, and thus to develop clearer spatial patterns,
we have also used a deterministic simulation. This simulation is based on
choosing a house type according to the rule

Type < max {Py} (4.28)
k
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which simply makes the choice according to that alternative which has the
maximum probability for individual i.

We can now show the simulations. We will first discuss the random
simulations which are based on equation (4.23), then equations (4.25) and
(4.26), but we will not show these visually as they do not generate much
imagery of import. The main impression is one of massive variability of
house type in spatial terms. There is almost a complete mix of types every-
where for both types of equation, thus implying that the relative evenness
and similarity of the probability profiles gives much greater weight to the
lower probabilities in each choice situation than would be the case in a real
context. Little spatial pattern can thus be discerned and this suggests that
random simulations based on discrete choice models are likely to produce
too little spatial discrimination if predicted in this way.

The deterministic simulations which involve equation (4.28) are shown
in Plate 4.4(a) and (b) for the full, and inner-outer models respectively,
where the four colors - red, yellow, green and blue — reflect converted flats,
purpose-built flats, terraced houses, and detached/semi-detached houses
respectively. Very clear spatial patterns emerge this time which show the
characteristic structure of residential land use in London, but there is little
difference between the two sets of model. The clearer of the two patterns
is Plate 4.4(a) based on the full model, but there is a ring of purpose-built
flats between the terraced and detached/semi-detached areas which is
unexpected. In Plate 4.4(b), purpose-built flats are closer in towards the
CBD. Note that in the simulations the total number of house choices is not
scaled in any way to reflect the scale of housing in London; thus this rep-
resents an additional prediction from the model. The patterns in general
though are very plausible, reflecting flats, terraced and detached/semi-
detached houses at increasing distance from the CBD, with the distribution
of purpose-built and converted flats clearly characterizing the flat-market
in London. One limitation of the deterministic model is that it does not
pick up the degree of local variation one might expect, but a more detailed
data base might resolve this.

Finally, we have begun to experiment with these simulations. Running
the models at s > 5 requires a larger processor because the memory
required explodes due to the recursion, and so far we have run the model
up to s = 7, although the increase in time required is exponential. Level of
recursion does affect the patterns we get, but generally these help us to
improve the ultimate look of the geometry, not the models themselves. Sim-
ple policy-predictive runs of the simulations are possible, for the input data
are easy to update. One could assume a process of aging and renewal,
varying according to simple rules and policies, which would then enable
a pseudo-dynamic simulation to be developed. A series of images of the
typical house types in London over the next 50 years could be generated
in this way. But these are for the future, and in any case, there are many
lines of inquiry that have to be followed up before then.
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4.9 Extending the Laboratory for Experimentation
and Visualization

The ability to display the overall pattern produced by models with an
implicit spatial dimension is a clear advantage of the large-scale simulations
adopted here. But these need not be generated within a fractal framework.
Simulation could proceed by examining each pixel in turn and building up
urban structure in this way on a regular spatial grid. Nevertheless, fractals
do generate realistic images, and one of the goals of this chapter has been
to make abstract models more visually intelligible and acceptable, and for
this, the fractal framework seems promising. As such, the technique is one
of generating spatial realism, and this clearly depends upon the display
devices used. The main problem emerging from this chapter, however,
relates to the development of a more consistent modeling strategy which
can be effectively incorporated into the hierarchical method used to struc-
ture the simulation. We have already indicated what is involved: in essence,
the hierarchy guiding the fractal simulation should be based on character-
istics of the city, and this clearly relates to the type of explanation and
modeling required. Discrete choice models show promise here, but so do
sequential and nested approaches involving entropy models (Batty, 1976).
This reasoning leads us to the conclusion that a more fundamental strat-
egy may be actually to explore land-use models which are themselves frac-
tal. Some examples already exist in physical geography: for example, the
sorts of terrain model explored by Goodchild (1982) and illustrated in
Chapter 3, and image processing techniques such as those developed by
Pentland (1984) are suggestive of the types of stochastic model that might
underlie the structure of land use. There are difficulties in that some of the
patterns are discontinuous, but it is worth exploring how such ideas could
be used to link what we already know about land use, central place, and
rank-size together in a fractal framework. With respect to discrete choice
models, there may even be the possibility of a fractal interpretation of the
underlying mechanisms which give rise to various forms of logit and probit
models, and there is clearly a possibility that questions of nesting and
aggregation might be reconciled with ideas about recursion and hierarchy.
In fact, in this chapter, the whole question of the spatial basis of discrete
choice models has emerged as problematic, and this suggests that further
research on spatial aggregation and discrete choice is worthy as an end in
itself, notwithstanding any fractal interpretations which might emerge.
Many other speculations are possible about where such developments
will best be focussed. An interesting project would be to examine the extent
to which regular, non-random fractal patterns built from cell-space models
(Tobler, 1979b; Couclelis, 1985) could be used as first approximations to
city patterns, and there is much work now developing in this domain
around concepts of cellular automata and artificial life. We also need to
consider how such simulations might be made dynamic, especially as there
is an obvious dynamic process underlying a model in which age acts as an
independent variable. In one sense, our models might already be seen as
explaining urban structure in terms of time and space, age and distance,
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and our earlier comments on possible policy simulations endorse this. In
particular, the question of redevelopment is central to residential location,
and any dynamic extension to the framework should enable such processes
to be captured. We will explore these ideas more fully from Chapter 7
onwards, but we also require a firmer empirical basis to our assertion that
urban structure is indeed fractal, in order to inform both description and
theory. We will begin our assault on this measurement task in the next
two chapters.





